Due to the exponentially increased demands of mobile data traffic, e.g., a 1000-fold increase in traffic demand from 4G to 5G, network densification is considered as a key mechanism in the evolution of cellular networks, and ultra-dense heterogeneous network (UDHN) is a promising technique to meet the requirements of explosive data traffic in 5G networks. In the UDHN, base station is brought closer and closer to users through densely deploying small cells, which would result in extremely high spectral efficiency and energy efficiency. In this article, we first present a potential network architecture for the UDHN, and then propose a generalized orthogonal/non-orthogonal random access scheme to improve the network efficiency while reducing the signaling overhead. Simulation results demonstrate the effectiveness of the proposed scheme. Finally, we present some of the key challenges of the UDHN.
Since the outbreak of COVID-19, many COVID-19 research studies have proposed different models for predicting the trend of COVID-19. Among them, the prediction model based on mathematical epidemiology (SIR) is the most widely used, but most of these models are adapted in special situations based on various assumptions. In this study, a general adapted time-window based SIR prediction model is proposed, which is characterized by introducing a time window mechanism for dynamic data analysis and using machine learning method predicts the basic reproduction number and the exponential growth rate of the epidemic. We analyzed COVID-19 data from February to July 2020 in seven countries–––China, South Korea, Italy, Spain, Brazil, Germany and France, and the numerical results showed that the framework can effectively measure the real-time changes of the parameters during the epidemic, and error rate of predicting the number of COVID-19 infections in a single day is within 5%.
Feedback from software users, such as bug reports, is vital in the management of software projects. In GitHub, the feedback is typically expressed as new issues. Through filing issue reports, users may help identify and fix bugs, document software code, and enhance software quality via feature requests. In this paper, we aim at investigating some characteristics of issues to facilitate issue management and software management. We investigate the important degrees of behaviors that are related to issues in popular projects to assess the importance of issues in GitHub and analyze the effectiveness of issue labeling for issue handling. Then, we explore the patterns of issue commits over time in popular projects based on visual analysis and obtain the following results: we find that the behaviors that are related to issues play important roles in the GitHub. We also find that the time distribution of issue commits follows a three-period development model, which approximately corresponds to the project life cycle. These results may provide a new knowledge about issues that can help managers manage and allocate project resources more effectively and even reduce software failures.INDEX TERMS Open-source software community, project development model, visual analysis, issue commit, software management.
COVID-19 is one of the biggest challenges that human beings have faced recently. Many researchers have proposed different prediction methods for establishing a virus transmission model and predicting the trend of COVID-19. Among them, the methods based on artificial intelligence are currently the most interesting and widely used. However, only using artificial intelligence methods for prediction cannot capture the time change pattern of the transmission of infectious diseases. To solve this problem, this paper proposes a COVID-19 prediction model based on time-dependent SIRVD by using deep learning. This model combines deep learning technology with the mathematical model of infectious diseases, and forecasts the parameters in the mathematical model of infectious diseases by fusing deep learning models such as LSTM and other time prediction methods. In the current situation of mass vaccination, we analyzed COVID-19 data from January 15, 2021, to May 27, 2021 in seven countries – India, Argentina, Brazil, South Korea, Russia, the United Kingdom, France, Germany, and Italy. The experimental results show that the prediction model not only has a 50% improvement in single-day predictions compared to pure deep learning methods, but also can be adapted to short- and medium-term predictions, which makes the overall prediction more interpretable and robust.
With the rapid development of social networks, it has become extremely important to evaluate the propagation capabilities of the nodes in a network. Related research has wide applications, such as in network monitoring and rumor control. However, the current research on the propagation ability of network nodes is mostly based on the analysis of the degree of nodes. The method is simple, but the effectiveness needs to be improved. Based on this problem, this paper proposes a method that is based on Tsallis entropy to detect the propagation ability of network nodes. This method comprehensively considers the relationship between a node’s Tsallis entropy and its neighbors, employs the Tsallis entropy method to construct the TsallisRank algorithm, and uses the SIR (Susceptible, Infectious, Recovered) model for verifying the correctness of the algorithm. The experimental results show that, in a real network, this method can effectively and accurately evaluate the propagation ability of network nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.