Aging is the greatest risk factor for human diseases, as it results in cellular growth arrest, impaired tissue function and metabolism, ultimately impacting life span. Two different mechanisms are thought to be primary causes of aging. One is cumulative DNA damage induced by a perpetuating cycle of oxidative stress; the other is nutrient-sensing adenosine monophosphate-activated protein kinase (AMPK) and rapamycin (mTOR)/ ribosomal protein S6 (rpS6) pathways. As the main bioactive component of natural Chinese medicine rhizoma coptidis (RC), berberine has recently been reported to expand life span in Drosophila melanogaster, and attenuate premature cellular senescence. Most components of RC including berberine, coptisine, palmatine, and jatrorrhizine have been found to have beneficial effects on hyperlipidemia, hyperglycemia and hypertension aging-related diseases. The mechanism of these effects involves multiple cellular kinase and signaling pathways, including anti-oxidation, activation of AMPK signaling and its downstream targets, including mTOR/rpS6, Sirtuin1/ forkhead box transcription factor O3 (FOXO3), nuclear factor erythroid-2 related factor-2 (Nrf2), nicotinamide adenine dinucleotide (NAD+) and nuclear factor-κB (NF-κB) pathways. Most of these mechanisms converge on AMPK regulation on mitochondrial oxidative stress. Therefore, such evidence supports the possibility that rhizoma coptidis, in particular berberine, is a promising anti-aging natural product, and has pharmaceutical potential in combating aging-related diseases via anti-oxidation and AMPK cellular kinase activation.
Inflammation plays a significant role in the occurrence and development of multiple diseases. This study comprehensively reviews and presents literature from the last five years, showing that acupuncture indeed exerts strong anti-inflammatory effects in multiple biological systems, namely, the immune, digestive, respiratory, nervous, locomotory, circulatory, endocrine, and genitourinary systems. It is well known that localized acupuncture-mediated anti-inflammatory effects involve the regulation of multiple populations and functions of immune cells, including macrophages, granulocytes, mast cells, and T cells. In acupuncture stimulation, macrophages transform from the M1 to the M2 phenotype and the negative TLR4 regulator PPARγ is activated to inhibit the intracellular TLR/MyD88 and NOD signaling pathways. The downstream IκBα/NF-κB and P38 MAPK pathways are subsequently inhibited by acupuncture, followed by suppressed production of inflammasome and proinflammatory mediators. Acupuncture also modulates the balance of helper T cell populations. Furthermore, it inhibits oxidative stress by enhancing SOD activity via the Nrf2/ HO-1 pathway and eliminates the generation of oxygen free radicals, thereby preventing inflammatory cell infiltration. The anti-inflammatory effects of acupuncture on different biological systems are also specific to individual organ microenvironments. As part of its anti-inflammatory action, acupuncture deforms connective tissue and upregulates the secretion of various molecules in acupoints, further activating the NF-κB, MAPK, and ERK pathways in mast cells, fibroblasts, keratinocytes, and monocytes/macrophages. The somatic afferents present in acupuncture-activated acupoints also convey sensory signals to the spinal cord, brainstem, and hypothalamic neurons. Upon information integration in the brain, acupuncture further stimulates multiple neuro-immune pathways, including the cholinergic anti-inflammatory, vagus-adrenal medulla-dopamine, and sympathetic pathways, as well as the hypothalamus-pituitary-adrenal axis, ultimately acting immune cells via the release of crucial neurotransmitters and hormones. This review provides a scientific and reliable basis and viewpoints for the clinical application of acupuncture in various inflammatory conditions.
Chronic low back pain (CLBP), lasting >3 months, is the end result of multiple pathogenic factors. Unfortunately, little is known about CLBP pathogenesis, which limits its advancements in clinical therapy and disease management. This paper summarizes the known pathological axes of CLBP, involving both peripheral and central systems. In particular, this paper details injurious nerve stimulation, inflammation-induced peripheral pathway, and central sensitization. Lumbar components, such as intervertebral disc (IVD), facet joints, muscles, fascia, ligaments, and joint capsules, contain pain receptors called nociceptors. Degeneration of the aforementioned lumbar components activates inflammatory pathways, which can directly damage nerves, lower nociceptor threshold to fire action potentials (AP), and cause pain. Additionally, damaged lumbar IVDs and endplates can also lead to the pathologic invasion of nerve growth and innervation, followed by the compression of herniated IVDs on nerve roots, thereby causing traumatic neuropathic pain. The central mechanism of CLBP involves alteration of the sensory processing of the brain and malfunction of the descending pain modulatory system, which facilitates pain amplification in the center nervous system (CNS). Lastly, abnormalities in the brain biochemical metabolism, activation of glial cells, and subsequent inflammation also play important roles in CLBP development. Taken together, inflammation plays an important role in both peripheral and central sensitization of CLBP. Due to the heterogeneity of CLBP, its pathological mechanism remains complex and difficult to understand. Therefore, it is a worthy field for future research into the subcomponents of CLBP pathogenesis, in order to distinguish the specific form of the disease, identify its origins, and develop corresponding highly effective comprehensive therapy against CLBP.
Kisspeptin/metastin has been implicated as a critical regulator in luteinizing hormone (LH) secretion and the reproductive system mediating the effect of estrogen on GnRH neurons. In the present study we examined the sex differences in the effects of estrogen on Kiss1/kisspeptin expression in the forebrain by using gonadectomized rats to assess the interaction of kisspeptin and GnRH neurons. Kiss1/kisspeptin cell bodies were abundant in the rostral periventricular area of the third ventricle (RV3P) and the arcuate nucleus (ARC). A few cell bodies were also observed in other portions of the forebrain, i.e. the bed nucleus of the stria terminalis (BST), the paraventricular hypothalamic nucleus (PaAP), the ventromedial hypothalamic nucleus (VMH), and the medial amygdaloid nucleus (MeA). Kisspeptin-immunoreactive fibers were found mainly in the median eminence (ME), the ARC, and the RV3P, but were scarce in the preoptic area (POA), where GnRH neurons are localized. We also found that estrogen triggers expression of the Kiss1 gene and peptide within all the regions except the ARC, and that the effects in the RV3P, BST, PaAP, and VMH are greater in estrogen treated ovariectomized female rat. It is noteworthy that kisspeptin and GnRH neurons were densely associated in the ME but were rarely in contact in the POA. Thus, our results suggest that kisspeptin-positive neurons, except for the ones in the ARC, are related not only to estrogen-positive feedback, but also sex dimorphism, and that kisspeptin regulates GnRH release in the ME rather than the POA.
BackgroundWe previously found that the low frequency magnetic fields (LF-MF) inhibited gastric and lung cancer cell growth. We suppose that exposure to LF-MF may modulate immune function so as to inhibit tumor. We here investigated whether LF-MF can inhibit the proliferation and metastasis of melanoma and influence immune function.MethodsThe effect of MF on the proliferation, cell cycle and ultrastracture of B16-F10 in vitro was detected by cell counting Kit-8 assay, flow cytometry, and transmission electron microscopy. Lung metastasis mice were prepared by injection of 2 × 105 B16-F10 melanoma cells into the tail vein in C57BL/6 mice. The mice were then exposed to an LF-MF (0.4 T, 7.5 Hz) for 43 days. Survival rate, tumor markers and the innate and adaptive immune parameters were measured.ResultsThe growth of B16-F10 cells was inhibited after exposure to the LF-MF. The inhibition was related to induction of cell cycle arrest and decomposition of chromatins. Moreover, the LF-MF prolonged the mouse survival rate and inhibited the proliferation of B16-F10 in melanoma metastasis mice model. Furthermore, the LF-MF modulated the immune response via regulation of immune cells and cytokine production. In addition, the number of Treg cells was decreased in mice with the LF-MF exposure, while the numbers of T cells as well as dendritic cells were significantly increased.ConclusionLF-MF inhibited the growth and metastasis of melanoma cancer cells and improved immune function of tumor-bearing mice. This suggests that the inhibition may be attributed to modulation of LF-MF on immune function and LF-MF may be a potential therapy for treatment of melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.