As an accurate measurement of physical activity, step counts data can be collected expediently by smartphones and wearable devices. Complete and high time-resolution step counts data record the time and intensity of individuals’ physical activity in a day, and can be used to mine activity habits or to recommend customized workout plans. However, sparse step counts data are common in practice due to hardware and software limitations. Understanding the value of sparse step counts data can contribute to its application in healthcare, and also help us to design cost-effective hardware and software. In this paper, we aim to infer activity patterns from sparse step counts data. We design a deep learning model based on Recurrent Neural Networks, namely MLP-GRU, which considers bidirectional short-term dependency and long-term regularity of sparse step counts data, and implements data-driven imputation and classification. We also develop an interpretable and elastic method to obtain sparse step counts data labeled with multi-granular activity patterns to train MLP-GRU. Evaluations on real-world datasets reveal that MLP-GRU outperforms other strong baseline methods. The results also show that activity patterns can be inferred from extremely sparse step counts data with high accuracy, provided that proper granularity is used for data of different sparsity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.