Periodontal disease is the main reason for tooth loss in adults. Tissue engineering and regenerative medicine are advanced technologies used to manage soft and hard tissue defects caused by periodontal disease. We developed a transforming growth factor-β3/chitosan sponge (TGF-β3/CS) to repair periodontal soft and hard tissue defects. We investigated the proliferation and osteogenic differentiation behaviors of primary human periodontal ligament stem cells (hPDLSCs) to determine the bioactivity and potential application of TGF-β3 in periodontal disease. We employed calcein-AM/propidium iodide (PI) double labeling or cell membranes (CM)-Dil labeling coupled with fluorescence microscopy to trace the survival and function of cells after implantation in vitro and in vivo. The mineralization of osteogenically differentiated hPDLSCs was confirmed by measuring alkaline phosphatase (ALP) activity and calcium content. The levels of COL I, ALP, TGF-βRI, TGF-βRII, and Pp38/t-p38 were assessed by western blotting to explore the mechanism of bone repair prompted by TGF-β3. When hPDLSCs were implanted with various concentrations of TGF-β3/CS (62.5–500 ng/mL), ALP activity was the highest in the TGF-β3 (250 ng/mL) group after 7 d (p < 0.05 vs. control). The calcium content in each group was increased significantly after 21 and 28 d (p < 0.001 vs. control). The optimal result was achieved by the TGF-β3 (500 ng/mL) group. These results showed that TGF-β3/CS promotes osteogenic differentiation of hPDLSCs, which may involve the p38 mitogen-activated protein kinase (MAPK) signaling pathway. TGF-β3/CS has the potential for application in the repair of incomplete alveolar bone defects.
Background Sensitive skin (SS) is easily irritated by various environmental stimuli, and epidemiological surveys surprisingly find that self-perceived SS is widespread worldwide. Objective To investigate whether SS is linked to changes in the skin bacterial population using 16S rRNA sequencing and bioinformatic analysis. Patients and Methods According to both the Huaxi SS Questionnaire and Lactic Acid Stimulation Test, 60 female volunteers in Guangzhou were classified into normal skin (NS) and SS groups. Skin barrier parameters were assessed by the CK skin tester. The DNA of the bacterial flora on the facial skin surface was extracted and was subjected to 16S rRNA sequencing. Results The skin hydration was significantly lower in the SS group compared to the NS group ( P =0.032). Based on 16S rRNA sequencing and bioinformatic analysis, the number of operational taxonomic units (OTUs) significantly decreased in the SS group ( P =0.0235, SS vs NS). The relative abundance of Neisseriaceae in SS group decreased significantly ( P <0.05, SS vs NS), while that of Neisseria (within the Neisseriaceae family) increased significantly ( P <0.05, SS vs NS). Conclusion SS is accompanied by a decrease in species diversity and richness, which may be relevant to the weakening of the microbial barrier (due to the increase of Neisseria or the decrease of Neisseriaceae ). Thus, corresponding treatment for Neisseriaceae may be a new idea in the treatment of SS.
Periodontal disease is the main reason for tooth loss in adults. Tissue engineering and regenerative medicine are the advanced technologies used to manage soft and hard tissue defects caused by periodontal disease. We developed a transforming growth factor-β3 chitosan sponge (TGF-β3/CS) to repair periodontal soft and hard tissue defects. We investigated the proliferation and osteogenic differentiation behaviors of primary human periodontal ligament stem cells (hPDLSCs) to discuss the bioactivity and application of TGF-β3 in periodontal disease. We separately used Calcein-AM/PI double-labeling or CM-Dil-labeling coupled with fluorescence microscopy to trace the survival and function of the cells after implantation in vitro or in vivo. The mineralization of osteogenic differentiated hPDLSCs was confirmed by measuring ALP activity and calcium content. The levels of COL I, ALPL, TGF-βRI, TGF-βRII, and Pp38/t-p38 were tested using Western blot to explore the mechanism of bone repair prompted by TGF-β3. When hPDLSCs were inoculated with different concentrations of TGF-β3/CS (62.5–500 ng/mL), ALP activity was the highest in TGF-β3 (250 ng/mL) group after seven days (P < 0.05 vs. control); the calcium content in each group increased significantly after 21 and 28 days (P < 0.001 vs. control). The best result was achieved in the TGF-β3 (500 ng/mL) group. All results showed that TGF-β3/CS can promote osteogenic differentiation of hPDLSC and may be involved in the p38 MAPK signaling pathway. TGF-β3/CS has the potential for application in the repair of incomplete alveolar bone defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.