Molecular representation learning (MRL) has gained tremendous attention due to its critical role in learning from limited supervised data for applications like drug design. In most MRL methods, molecules are treated as 1D sequential tokens or 2D topology graphs, limiting their ability to incorporate 3D information for downstream tasks and, in particular, making it almost impossible for 3D geometry prediction/generation. In this paper, we propose a universal 3D MRL framework, called Uni-Mol, that significantly enlarges the representation ability and application scope of MRL schemes. Uni-Mol contains two pretrained models with the same SE(3) Transformer architecture: a molecular model pretrained by 209M molecular conformations; a pocket model pretrained by 3M candidate protein pocket data. Besides, Uni-Mol contains several finetuning strategies to apply the pretrained models to various downstream tasks. By properly incorporating 3D information, Uni-Mol outperforms SOTA in 14/15 molecular property prediction tasks. Moreover, Uni-Mol achieves superior performance in 3D spatial tasks, including protein-ligand binding pose prediction, molecular conformation generation, etc. The code, model, and data are made publicly available at https://github.com/dptech-corp/Uni-Mol.
Molecular representation learning (MRL) has gained tremendous attention due to its critical role in learning from limited supervised data for applications like drug design. In most MRL methods, molecules are treated as 1D sequential tokens or 2D topology graphs, limiting their ability to incorporate 3D information for downstream tasks and, in particular, making it almost impossible for 3D geometry prediction or generation. Herein, we propose Uni-Mol, a universal MRL framework that significantly enlarges the representation ability and application scope of MRL schemes. Uni-Mol is composed of two models with the same SE(3)-equivariant transformer architecture: a molecular pretraining model trained by 209M molecular conformations; a pocket pretraining model trained by 3M candidate protein pocket data. The two models are used independently for separate tasks, and are combined when used in protein-ligand binding tasks. By properly incorporating 3D information, Uni-Mol outperforms SOTA in 14/15 molecular property prediction tasks. Moreover, Uni-Mol achieves superior performance in 3D spatial tasks, including protein-ligand binding pose prediction, molecular conformation generation, etc. Finally, we show that Uni-Mol can be successfully applied to the tasks with few-shot data like pocket druggability prediction. The model and data will be made publicly available at \url{https://github.com/dptech-corp/Uni-Mol}
Molecular representation learning (MRL) has gained tremendous attention due to its critical role in learning from limited supervised data for applications like drug design. In most MRL methods, molecules are treated as 1D sequential tokens or 2D topology graphs, limiting their ability to incorporate 3D information for downstream tasks and, in particular, making it almost impossible for 3D geometry prediction or generation. Herein, we propose Uni-Mol, a universal MRL framework that significantly enlarges the representation ability and application scope of MRL schemes. Uni-Mol is composed of two models with the same SE(3)-equivariant transformer architecture: a molecular pretraining model trained by 209M molecular conformations; a pocket pretraining model trained by 3M candidate protein pocket data. The two models are used independently for separate tasks, and are combined when used in protein-ligand binding tasks. By properly incorporating 3D information, Uni-Mol outperforms SOTA in 14/15 molecular property prediction tasks. Moreover, Uni-Mol achieves superior performance in 3D spatial tasks, including protein-ligand binding pose prediction, molecular conformation generation, etc. Finally, we show that Uni-Mol can be successfully applied to the tasks with few-shot data like pocket druggability prediction. The model and data will be made publicly available at \url{https://github.com/dptech-corp/Uni-Mol}
Molecular representation learning (MRL) has gained tremendous attention due to its critical role in learning from limited supervised data for applications like drug design. In most MRL methods, molecules are treated as 1D sequential tokens or 2D topology graphs, limiting their ability to incorporate 3D information for downstream tasks and, in particular, making it almost impossible for 3D geometry prediction or generation. Herein, we propose Uni-Mol, a universal MRL framework that significantly enlarges the representation ability and application scope of MRL schemes. Uni-Mol is composed of two models with the same SE(3)-equivariant transformer architecture: a molecular pretraining model trained by 209M molecular conformations; a pocket pretraining model trained by 3M candidate protein pocket data. The two models are used independently for separate tasks, and are combined when used in protein-ligand binding tasks. By properly incorporating 3D information, Uni-Mol outperforms SOTA in 14/15 molecular property prediction tasks. Moreover, Uni-Mol achieves superior performance in 3D spatial tasks, including protein-ligand binding pose prediction, molecular conformation generation, etc. Finally, we show that Uni-Mol can be successfully applied to the tasks with few-shot data like pocket druggability prediction. The code, model, and data are made publicly available at \url{https://github.com/dptech-corp/Uni-Mol}.
Organic light-emitting diodes (OLEDs) have gained widespread commercial use, yet there is a continuous need to identify innovative emitters that offer higher efficiency and broader color gamut. To effectively screen out promising OLED molecules that are yet to be synthesized, we perform a representation learning aided high throughput virtual screening (HTVS) over millions of Ir(III) complexes, a prototypical type of phosphorescent OLED material, constructed via a random combination of 278 reported ligands. We successfully screen out a decent amount of promising candidates for both display and lighting purposes, which are worth further experimental investigation. The high efficiency and accuracy of our model are largely attributed to the pioneering attempt of using representation learning to organic luminescent molecules, which is initiated by a pre-training procedure with over 1.6 million 3D molecular structures and frontier orbital energies predicted via semi-empirical methods, followed by a fine-tune scheme via the quantum mechanical computed properties over around 1500 candidates. Such workflow enables an effective model construction process that is otherwise hindered by the scarcity of labeled data, and can be straightforwardly extended to the discovery of other novel materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.