In order to model fluctuation process characteristics of photovoltaic (PV) outputs, this paper proposes a novel mixed Gaussian model with the expectation maximization (EM) algorithm. Firstly, random components of PV outputs are obtained through computing the difference between the measured data of PV output and its theoretical outputs. Secondly, the EM algorithm is used to determine the weight of different Gaussian distribution functions. Finally, the mixed Gaussian model is obtained by linearly superimposing these Gaussian functions with the weight. Based on the simulation results on the measured data in Xichang City, China, the effectiveness of the proposed model is verified. Furthermore, this model has proven to be significantly better than other traditional models including t location-scale (TLS) distribution model.
Medium and long-term weather sequence forecast becomes unreliable beyond two weeks since the weather is a chaotic system. Using values of same months for electricity prediction of wind power is the usual method. This approach defaults wind power output with annual cycle law. However, the periodic pattern can be very complicated in fact with multiple time scales. This paper proposes an approach with multi-scale periodic pattern considered. The application of parametric estimation on cumulative distribution function avoids the difficulty of predicting the power curve. Meteorological condition is considered to some extent via multi-scale periodic pattern explored basing on historical energy data. This work is an exploration for medium and long-term wind power forecasting that can well adapt to existing conditions. It has better prediction accuracy than the method without multi-scale periodicity considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.