Overgrinding of Portland cement brings excessive shrinkage and poor self-healing ability to concrete. In this paper, through the ultrasonic test and optical micrograph observation, the self-healing properties of concrete prepared by cement with different particle size distributions were studied. Besides, the effect of carbonation and continued hydration on self-healing of concrete was analyzed. Results show that, for the Portland cement containing more particles with the size 30~60 μm, the concrete could achieve a better self-healing ability of concrete at 28 days. For the two methods to characterize the self-healing properties of concrete, the ultrasonic test is more accurate in characterizing the self-healing of internal crack than optical micrograph observation. The autogenous self-healing of concrete is jointly affected by the continued hydration and carbonation. At 7 days and 30 days, the autogenous self-healing of concrete is mainly controlled by the continued hydration and carbonation, respectively. The cement particle size could affect the continued hydration by affecting un-hydrated cement content and the carbonation by affecting the Ca(OH)2 content. Therefore, a proper distribution of cement particle size, which brings a suitable amount of Ca(OH)2 and un-hydrated cement, could improve the self-healing ability of concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.