The inhibition of this polysulfide shuttle effect and the promotion of the redox reaction kinetics remains as the key material challenges of lithium-sulfur batteries (LSBs) to be urgently solved.Here we report a new architecture for the cathode material based on nanoreactor of ZnSe/Ndoped hollow carbon (ZnSe/NHC). This material combination and the hollow geometry provide three key benefits to the LSBs cathode: i) The combination of lithiophilic sites of NHC and sulfiphilic sites of ZnSe effectively trap LiPS as demonstrated by experimental results and density functional theory (DFT) calculations; ii) In part related to this promoted adsorption, the ZnSe/NHC material combination is able to facilitate the Li + diffusion, thus promoting the redox reaction kinetics; iii) The hollow nanoreactor design traps LiPS and accommodates volumetric expansion preventing the cathode material decomposition. As a result, LSBs cathodes based on this hybrid material, S@ZnSe/NHC, are characterized by high initial capacities, 1475 mAh g −1 at 0.1 C and 542 mAh g −1 at 3 C, and excellent rate capability. Besides, these cathodes deliver stable operation with only 0.022% capacity decay per cycle after 800 cycles at 3 C. Even at high sulfur loading of 3.2 mg cm −2 , a reversible capacity of 540.5 mAh g −1 is delivered after 600 cycles at 1 C. Overall, this work not only further demonstrates the large potential of transitionmetal selenides as cathode materials in LSBs, but also demonstrates the nanoreactor design to be a highly suitable architecture to enhance cycle stability.
Lithium–sulfur batteries (LSBs) are considered to be one of the most promising next generation energy storage systems due to their high energy density and low material cost. However, there are still some challenges for the commercialization of LSBs, such as the sluggish redox reaction kinetics and the shuttle effect of lithium polysulfides (LiPS). Here a 2D layered organic material, C2N, loaded with atomically dispersed iron as an effective sulfur host in LSBs is reported. X‐ray absorption fine spectroscopy and density functional theory calculations prove the structure of the atomically dispersed Fe/C2N catalyst. As a result, Fe/C2N‐based cathodes demonstrate significantly improved rate performance and long‐term cycling stability. Fe/C2N‐based cathodes display initial capacities up to 1540 mAh g−1 at 0.1 C and 678.7 mAh g−1 at 5 C, while retaining 496.5 mAh g−1 after 2600 cycles at 3 C with a decay rate as low as 0.013% per cycle. Even at a high sulfur loading of 3 mg cm−2, they deliver remarkable specific capacity retention of 587 mAh g−1 after 500 cycles at 1 C. This work provides a rational structural design strategy for the development of high‐performance cathodes based on atomically dispersed catalysts for LSBs.
The shuttle effect and sluggish conversion kinetics of lithium polysulfides (LiPS) hamper the practical application of lithium–sulfur batteries (LSBs). Toward overcoming these limitations, herein an in situ grown C2N@NbSe2 heterostructure is presented with remarkable specific surface area, as a Li–S catalyst and LiPS absorber. Density functional theory (DFT) calculations and experimental results comprehensively demonstrate that C2N@NbSe2 is characterized by a suitable electronic structure and charge rearrangement that strongly accelerates the LiPS electrocatalytic conversion. In addition, heterostructured C2N@NbSe2 strongly interacts with LiPS species, confining them at the cathode. As a result, LSBs cathodes based on C2N@NbSe2/S exhibit a high initial capacity of 1545 mAh g−1 at 0.1 C. Even more excitingly, C2N@NbSe2/S cathodes are characterized by impressive cycling stability with only 0.012% capacity decay per cycle after 2000 cycles at 3 C. Even at a sulfur loading of 5.6 mg cm−2, a high areal capacity of 5.65 mAh cm−2 is delivered. These results demonstrate that C2N@NbSe2 heterostructures can act as multifunctional polysulfide mediators to chemically adsorb LiPS, accelerate Li‐ion diffusion, chemically catalyze LiPS conversion, and lower the energy barrier for Li2S precipitation/decomposition, realizing the “adsorption‐diffusion‐conversion” of polysulfides.
Solution‐processed and low‐temperature Sn‐rich perovskites show their low bandgap of about 1.2 eV, enabling potential applications in next‐generation cost‐effective ultraviolet (UV)–visible (vis)–near infrared (NIR) photodetection. Particularly, the crystallization (crystallinity and orientation) and film (smooth and dense film) properties of Sn‐rich perovskites are critical for efficient photodetectors, but are limitedly studied. Here, controllable crystallization for growing high‐quality films with the improvements of increased crystallinity and strengthened preferred orientation through a introducing rubidium cation into the methylammonium Sn‐Pb perovskite system (65% Sn) is achieved. Fundamentally, the theoretical results show that rubidium incorporation causes lower surface energy of (110) plane, facilitating growth in the dominating plane and suppressing growth of other competing planes. Consequently, the methylammonium‐rubidium Sn‐Pb perovskite photodetectors simultaneously achieve larger photocurrent and lower noise current. Finally, highly efficient UV–vis–NIR (300–1100 nm) photodetectors with record‐high linear dynamic range of 110 and 3 dB cut‐off frequency reaching 1 MHz are demonstrated. This work contributes to enriching the cation selection in Sn‐Pb perovskite systems and offering a promising candidate for low‐cost UV–vis–NIR photodetection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.