Much interest is currently focused on the emerging role of tumorstroma interactions essential for supporting tumor progression. Carcinoma-associated fibroblasts (CAFs), frequently present in the stroma of human breast carcinomas, include a large number of myofibroblasts, a hallmark of activated fibroblasts. These fibroblasts have an ability to substantially promote tumorigenesis. However, the precise cellular origins of CAFs and the molecular mechanisms by which these cells evolve into tumor-promoting myofibroblasts remain unclear. Using a coimplantation breast tumor xenograft model, we show that resident human mammary fibroblasts progressively convert into CAF myofibroblasts during the course of tumor progression. These cells increasingly acquire two autocrine signaling loops, mediated by TGF-β and SDF-1 cytokines, which both act in autostimulatory and cross-communicating fashions. These autocrine-signaling loops initiate and maintain the differentiation of fibroblasts into myofibroblasts and the concurrent tumor-promoting phenotype. Collectively, these findings indicate that the establishment of the self-sustaining TGF-β and SDF-1 autocrine signaling gives rise to tumor-promoting CAF myofibroblasts during tumor progression. This autocrine-signaling mechanism may prove to be an attractive therapeutic target to block the evolution of tumor-promoting CAFs.CXCR4 | Smad | tumor microenvironment | alpha-smooth muscle actin M yofibroblasts are often observed in the stroma of various human carcinomas that include those of the breast (1). The presence of these cells in large numbers is also associated with higher-grade malignancy and poor prognosis in patients (2-4). Myofibroblasts express α-smooth muscle actin (α-SMA) that distinguishes these cells from fibroblasts and represents a hallmark of activated fibroblasts (5-10). The activated myofibroblast state of stromal fibroblasts also correlates with their ability to promote tumor growth (11)(12)(13)(14). Although different types of mesenchymal cells and epithelial cells are proposed to be precursors of the myofibroblasts present in tumors (15-20), their precise cellular origins and functional contributions to tumor growth still remain unclear.In recent years, the tumor-promoting roles of stromal fibroblasts and α-SMA-positive myofibroblasts, collectively termed carcinoma-associated fibroblasts (CAFs), have been studied (21). CAFs, when inoculated with carcinoma cells, have potently promoted the in vivo proliferation of carcinoma cells and tumor growth in mouse xenograft models (14,(21)(22)(23)(24)(25). We previously demonstrated that CAFs, prepared directly from invasive human mammary carcinomas, contain substantial numbers of myofibroblasts that secrete elevated levels of the proangiogenic chemokine, stromal cell-derived factor-1 (SDF-1, also called CXCL12) (14). SDF-1 signaling via its cognate receptor CXCR4, expressed on the surface of carcinoma cells, directly boosts the proliferation of these cells and can stimulate neoangiogenesis by recruiting circulating endot...
SUMMARY MicroRNAs are well-suited to regulate tumor metastasis due to their capacity to coordinately repress numerous target genes, thereby potentially enabling their intervention at multiple steps of the invasion-metastasis cascade. We identify a microRNA exemplifying these attributes, miR-31, whose expression correlates inversely with metastasis in human breast cancer patients. Overexpression of miR-31 in otherwise-aggressive breast tumor cells suppresses metastasis. We deploy a stable microRNA sponge strategy to stably inhibit miR-31 in vivo; this allows otherwise-non-aggressive breast cancer cells to metastasize. These phenotypes do not involve confounding influences on primary tumor development and are specifically attributable to miR-31-mediated inhibition of several steps of metastasis, including local invasion, extravasation or initial survival at a distant site, and metastatic colonization. Such pleiotropy is achieved via coordinate repression of a cohort of metastasis-promoting genes, including RhoA. Indeed, RhoA re-expression partially reverses miR-31-imposed metastasis-suppression. These findings indicate that miR-31 uses multiple mechanisms to oppose metastasis.
Sporadic basal-like cancers (BLC) are a distinct class of human breast cancers that are phenotypically similar to BRCA1-associated cancers. Like BRCA1-deficient tumors, most BLC lack markers of a normal inactive X chromosome (Xi). Duplication of the active X chromosome and loss of Xi characterized almost half of BLC cases tested. Others contained biparental but nonheterochromatinized X chromosomes or gains of X chromosomal DNA. These abnormalities did not lead to a global increase in X chromosome transcription but were associated with overexpression of a small subset of X chromosomal genes. Other, equally aneuploid, but non-BLC rarely displayed these X chromosome abnormalities. These results suggest that X chromosome abnormalities contribute to the pathogenesis of BLC, both inherited and sporadic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.