We propose a novel framework for fast and robust video anomaly detection and localization in complicated crowd scenes. Images of each video are split into cells for extracting local motion features represented by optical flow. In the train videos, most background cells are subtracted by ViBe model. Feature vectors are extracted from each cell by integrating the value of optical flow in 8 different direction intervals. Then we apply Principal Component Analysis (PCA) to transform the feature vectors. The normal activity patterns in the train videos are learnt by constructing a Gaussian Mixture Model (GMM) upon the feature vectors. For any new feature vector extracted from the test video clips, we use the learnt model to calculate a probability value to represent normal level of each cell. Considering the continuity of the motion, we also use abnormal information obtained from previous frames as a supplementary for anomaly prediction in the current frame. At last, we determine whether an activity pattern of a cell is normal or abnormal by using mean shift to cluster the probability values of the frame. Qualitative experiments on reallife surveillance videos, the recently published UCSD anomaly detection datasets, validate the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.