Risk for transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among close contacts of infected persons has not been well estimated. This study evaluates the risk for transmission of SARS-CoV-2 among a prospective cohort of 3410 close contacts in China exposed to 391 persons with COVID-19 infection according to different settings of exposure.
Metabolic regulation of histone marks is associated with diverse biological processes through dynamically modulating chromatin structure and functions. Here we report the identification and characterization of a histone mark, lysine benzoylation (Kbz). Our study identifies 22 Kbz sites on histones from HepG2 and RAW cells. This type of histone mark can be stimulated by sodium benzoate (SB), an FDA-approved drug and a widely used chemical food preservative, via generation of benzoyl CoA. By ChIP-seq and RNA-seq analysis, we demonstrate that histone Kbz marks are associated with gene expression and have physiological relevance distinct from histone acetylation. In addition, we demonstrate that SIRT2, a NAD+-dependent protein deacetylase, removes histone Kbz both in vitro and in vivo. This study therefore reveals a new type of histone marks with potential physiological relevance and identifies possible non-canonical functions of a widely used chemical food preservative.
BackgroundResveratrol extracted from grape has been an ideal alternative drug in the therapy of different cancers including colorectal cancer (CRC). Since the underlying mechanisms of resveratrol on the invasion and metastasis of CRC have not been fully elucidated, and epithelial-to-mesenchymal transition (EMT) is a key process associated with the progression of CRC, here we aimed to investigate the potential mechanism of resveratrol on the inhibition of TGF-β1-induced EMT in CRC LoVo cells.MethodsWe investigated the anticancer effect of resveratrol against LoVo cells in vitro and in vivo. In vivo, the impact of resveratrol on invasion and metastasis was investigated by mice tail vein injection model and mice orthotopic transplantation tumor model. In vivo imaging was applied to observe the lungs metastases, and hemaoxylin-eosin (HE) staining was used to evaluate metastatic lesions. In vitro, impact of resveratrol on the migration and invasion of LoVo cells was evaluated by transwell assay. Inhibition effect of resveratrol on TGF-β-induced EMT was examined by morphological observation. Epithelial phenotype marker E-cadherin and mesenchymal phenotype marker Vimentin were detected by western blot and immunofluorescence. Promoter activity of E-cadherin was measured using a dual-luciferase assay kit. mRNA expression of Snail and E-cadherin was measured by RT-PCR.ResultsWe demonstrated that, resveratrol inhibited the lung metastases of LoVo cells in vivo. In addition, resveratrol reduced the rate of lung metastases and hepatic metastases in mice orthotopic transplantation. In vitro, TGF-β1-induced EMT promoted the invasion and metastasis of CRC, reduced the E-cadherin expression and elevated the Vimentin expression, and activated the TGF-β1/Smads signaling pathway. But resveratrol could inhibit the invasive and migratory ability of LoVo cells in a concentration-dependent manner, increase the expression of E-cadherin, repress the expression of Vimentin, as well as the inhibition of TGF-β1/Smads signaling pathway. Meanwhile, resveratrol reduced the level of EMT-inducing transcription factors Snail and the transcription of E-cadherin during the initiation of TGF-β1-induced EMT.ConclusionsOur new findings provided evidence that, resveratrol could inhibit EMT in CRC through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression, and this might the potential mechanism of resveratrol on the inhibition of invasion and metastases in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.