Particle swarm optimization (PSO) has been proved to be an effective tool for function optimization. Its performance depends heavily on the characteristics of the employed exemplars. This necessitates considering both the fitness and the distribution of exemplars in designing PSO algorithms. Following this idea, we propose a novel PSO variant, called scatter learning PSO algorithm (SLPSOA) for multimodal problems. SLPSOA contains some new algorithmic features while following the basic framework of PSO. It constructs an exemplar pool (EP) that is composed of a certain number of relatively high-quality solutions scattered in the solution space, and requires particles to select their exemplars from EP using the roulette wheel rule. By this means, more promising solution regions can be found. In addition, SLPSOA employs Solis and Wets' algorithm as a local searcher to enhance its fine search ability in the newfound solution regions. To verify the efficiency of the proposed algorithm, we test it on a set of 16 benchmark functions and compare it with six existing typical PSO algorithms. Computational results demonstrate that SLPSOA can prevent premature convergence and produce competitive solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.