Shared autonomous taxi systems (SATS) are being regarded as a promising means of improving travel flexibility. Each shared autonomous taxi (SAT) requires very precise traffic information to independently and accurately select its route. In this study, taxis were replaced with ride-sharing autonomous vehicles, and the potential benefits of utilizing collected travel-time information for path finding in the new taxi system examined. Specifically, four categories of available SATs for every taxi request were considered: currently empty, expected-empty, currently sharable, and expected-sharable. Two simulation scenarios-one based on historical traffic information and the other based on real-time traffic information-were developed to examine the performance of information use in a SATS. Interestingly, in the historical traffic information-based scenario, the mean travel time for taxi requests and private vehicle users decreased significantly in the first several simulation days and then remained stable as the number of simulation days increased. Conversely, in the real-time information-based scenario, the mean travel time was constant. As the SAT fleet size increased, the total travel time for taxi requests significantly decreased, and convergence occurred earlier in the historical information-based scenario. The results demonstrate that historical traffic information is better than real-time traffic information for path finding in SATS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.