In this study, a multi-dimensional critical regulatory criteria and decision-making mechanism based on the scientific cognition of multi-dimensional attributes and characteristics of the water cycle was proposed. This system was functioned by deeply discriminating the nature-society binary characteristics of the five-dimensional characteristics of the water cycle system of the Haihe River Basin (water resources, economy, society, ecology, and environment) under the influence of high-intensity human activities and hydrological changes and by analyzing the organic interactive relationships between the five dimensions and their overall effect on the water cycle. A GDP calculation model was constructed in this study by adjusting the water environment for water resources, after which five-dimensional normalization objective functions were established for multi-objective analysis to carry out trade-off analysis of multi-dimensional regulatory indexes. In addition, synergetic theory, entropy theory and dissipation structure theory were introduced to construct an evaluation model for multi-dimensional regulatory schemes. A water cycle multi-dimensional critical overall regulatory model system was also established. This system consisted of a multi-objective macroeconomic model (DAMOS), water resource allocation model based on rules (ROWAS), evaluation model for WEDP (EMW) and multi-dimensional regulatory scheme evaluation model (SEAMUR) as the main body. To address the national demands faced by the Haihe River Basin as a result of combinatorial schemes for different hydrological series and water amounts diverted by the south-to-north water diversion project, this study adopted a hierarchy progression method to set up the technologies, investigated multi-dimensional overall regulatory methods, proposed an overall regulation threshold value for the water cycle of the Haihe River Basin, and recommended corresponding five-dimensional regulatory schemes.water cycle, multi-dimensional regulation, mode, threshold value, Haihe River Basin
Citation:Gan H, Wang L, Cao Y B, et al. Multi-dimensional overall regulatory modes and threshold values for water cycle of the Haihe River Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.