Microtubule-based transport by the kinesin motors, powered by ATP hydrolysis, is essential for a wide range of vital processes in eukaryotes. We obtained insight into this process by developing atomic models for no-nucleotide and ATP states of the monomeric kinesin motor domain on microtubules from cryo-EM reconstructions at 5–6 Å resolution. By comparing these models with existing X-ray structures of ADP-bound kinesin, we infer a mechanistic scheme in which microtubule attachment, mediated by a universally conserved ‘linchpin’ residue in kinesin (N255), triggers a clamshell opening of the nucleotide cleft and accompanying release of ADP. Binding of ATP re-closes the cleft in a manner that tightly couples to translocation of cargo, via kinesin's ‘neck linker’ element. These structural transitions are reminiscent of the analogous nucleotide-exchange steps in the myosin and F1-ATPase motors and inform how the two heads of a kinesin dimer ‘gate’ each other to promote coordinated stepping along microtubules.DOI: http://dx.doi.org/10.7554/eLife.04686.001
BackgroundWhen DNA double-strand breaks (DSB) are induced by ionizing radiation (IR) in cells, histone H2AX is quickly phosphorylated into γ-H2AX (p-S139) around the DSB site. The necessity of DNA-PKcs in regulating the phosphorylation of H2AX in response to DNA damage and cell cycle progression was investigated.ResultsThe level of γH2AX in HeLa cells increased rapidly with a peak level at 0.25 - 1.0 h after 4 Gy γ irradiation. SiRNA-mediated depression of DNA-PKcs resulted in a strikingly decreased level of γH2AX. An increased γH2AX was also induced in the ATM deficient cell line AT5BIVA at 0.5 - 1.0 h after 4 Gy γ rays, and this IR-increased γH2AX in ATM deficient cells was dramatically abolished by the PIKK inhibitor wortmannin and the DNA-PKcs specific inhibitor NU7026. A high level of constitutive expression of γH2AX was observed in another ATM deficient cell line ATS4. The alteration of γH2AX level associated with cell cycle progression was also observed. HeLa cells with siRNA-depressed DNA-PKcs (HeLa-H1) or normal level DNA-PKcs (HeLa-NC) were synchronized at the G1 phase with the thymidine double-blocking method. At ~5 h after the synchronized cells were released from the G1 block, the S phase cells were dominant (80%) for both HeLa-H1 and HeLa-NC cells. At 8 - 9 h after the synchronized cells released from the G1 block, the proportion of G2/M population reached 56 - 60% for HeLa-NC cells, which was higher than that for HeLa H1 cells (33 - 40%). Consistently, the proportion of S phase for HeLa-NC cells decreased to ~15%; while a higher level (26 - 33%) was still maintained for the DNA-PKcs depleted HeLa-H1 cells during this period. In HeLa-NC cells, the γH2AX level increased gradually as the cells were released from the G1 block and entered the G2/M phase. However, this γH2AX alteration associated with cell cycle progressing was remarkably suppressed in the DNA-PKcs depleted HeLa-H1 cells, while wortmannin and NU7026 could also suppress this cell cycle related phosphorylation of H2AX. Furthermore, inhibition of GSK3β activity with LiCl or specific siRNA could up-regulate the γH2AX level and prolong the time of increased γH2AX to 10 h or more after 4 Gy. GSK3β is a negative regulation target of DNA-PKcs/Akt signaling via phosphorylation on Ser9, which leads to its inactivation. Depression of DNA-PKcs in HeLa cells leads to a decreased phosphorylation of Akt on Ser473 and its target GSK3β on Ser9, which, in other words, results in an increased activation of GSK3β. In addition, inhibition of PDK (another up-stream regulator of Akt/GSK3β) by siRNA can also decrease the induction of γH2AX in response to both DNA damage and cell cycle progression.ConclusionDNA-PKcs plays a dominant role in regulating the phosphorylation of H2AX in response to both DNA damage and cell cycle progression. It can directly phosphorylate H2AX independent of ATM and indirectly modulate the phosphorylation level of γH2AX via the Akt/GSK3 β signal pathway.
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is well known as a critical component involving the nonhomologous end joining pathway of DNA double-strand breaks repair. Here, we showed another important role of DNA-PKcs in stabilizing spindle formation and preventing mitotic catastrophe in response to DNA damage. Inactivation of DNA-PKcs by small interfering RNA or specific inhibitor NU7026 resulted in an increased outcome of polyploidy after 2-Gy or 4-Gy irradiation. Simultaneously, a high incidence of multinucleated cells and multipolar spindles was detected in DNA-PKcs-deficient cells. Time-lapse video microscopy revealed that depression of DNA-PKcs results in mitotic catastrophe associated with mitotic progression failure in response to DNA damage. Moreover, DNA-PKcs inhibition led to a prolonged G 2 -M arrest and increased the outcome of aberrant spindles and mitotic catastrophe in Ataxia-telangiectasia mutated kinase (ATM)-deficient AT5BIVA cells. We have also revealed the localizations of phosphorylated DNA-PKcs/T2609 at the centrosomes, kinetochores, and midbody during mitosis. We have found that the association of DNA-PKcs and checkpoint kinase 2 (Chk2) is driven by Ku70/80 heterodimer. Inactivation of DNA-PKcs strikingly attenuated the ionizing radiation-induced phosphorylation of Chk2/T68 in both ATMefficient and ATM-deficient cells. Chk2/p-T68 was also shown to localize at the centrosomes and midbody. These results reveal an important role of DNA-PKcs on stabilizing spindle formation and preventing mitotic catastrophe in response to DNA damage and provide another prospect for understanding the mechanism coupling DNA repair and the regulation of mitotic progression. Cancer Res; 70(9); 3657-66. ©2010 AACR.
Radiation-induced bystander effect (RIBE) describes a set of biological effects in non-targeted cells that receive bystander signals from the irradiated cells. RIBE brings potential hazards to adjacent normal tissues in radiotherapy, and imparts a higher risk than previously thought. Excessive release of some substances from irradiated cells into extracellular microenvironment has a deleterious effect. For example, cytokines and reactive oxygen species have been confirmed to be involved in RIBE process via extracellular medium or gap junctions. However, RIBE-mediating signals and intercellular communication pathways are incompletely characterized. Here, we first identified a set of differentially expressed miRNAs in the exosomes collected from 2 Gy irradiated human bronchial epithelial BEP2D cells, from which miR-7-5p was found to induce autophagy in recipient cells. This exosome-mediated autophagy was significantly attenuated by miR-7-5p inhibitor. Moreover, our data demonstrated that autophagy induced by exosomal miR-7-5p was associated with EGFR/Akt/mTOR signaling pathway. Together, our results support the involvement of secretive exosomes in propagation of RIBE signals to bystander cells. The exosomes-containing miR-7-5p is a crucial mediator of bystander autophagy.
The resolution of subtomogram averages calculated from cryo-electron tomograms (cryo-ET) of crowded cellular environments is often limited due to signal-loss in, and misalignment of the subtomograms. In contrast, single-particle cryo-electron microscopy (SP-cryo-EM) routinely reaches near-atomic resolution of isolated complexes. We have developed a method called "TomographY-Guided 3D REconstruction of Subcellular Structures" (TYGRESS) that is a hybrid of cryo-ET and SP-cryo-EM, and is able to achieve close-to-nanometer resolution of complexes inside crowded cellular environments. TYGRESS combines the advantages of SP-cryo-EM (images with good signal-to-noise ratio/contrast and minimal radiation damage) and subtomogram averaging (3D-alignment of macromolecules in a complex sample). Using TYGRESS, we determined the structure of the intact ciliary axoneme with up to 12 Å resolution. These results reveal many structural details that were not visible by cryo-ET. TYGRESS is generally applicable to cellular complexes that are amenable to subtomogram averaging, bringing us a step closer to (pseudo-)atomic models of cells. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.