Quadcopters equipped with machine learning vision systems are bound to become an essential technique for precision agriculture applications in pastures in the near future. This paper presents a low-cost approach for livestock counting jointly with classification and semantic segmentation which provide the potential of biometrics and welfare monitoring in animals in real time. The method used in the paper adopts the state-of-the-art deep-learning technique known as Mask R-CNN for feature extraction and training in the images captured by quadcopters. Key parameters such as IoU (Intersection over Union) threshold, the quantity of the training data and the effect the proposed system performs on various densities have been evaluated to optimize the model. A real pasture surveillance dataset is used to evaluate the proposed method and experimental results show that our proposed system can accurately classify the livestock with an accuracy of 96% and estimate the number of cattle and sheep to within 92% of the visual ground truth, presenting competitive advantages of the approach feasible for monitoring the livestock.
ARTICLE HISTORY
Ice accretion on 3D complex configuration is studied by numerical method. The flow field is obtained by using Fluent 6.0 with S-A turbulence model, droplet trajectories and impingement characteristics are obtained using the Eulerian approach, ice shape is calculated basing on the improved Messinger model with a new runback distribution scheme. Using the method presented in this paper, ice accretion on NACA0012 is computed, and the results are in good agreement with the available experiment data. It shows preliminarily that the improved method described in this paper is feasible. Meanwhile, ice accretion on a four-element airplane is studied. According to the analysis of the calculated result, it illustrates that using the method presented in the paper can correctly simulate the ice accretion on 3D complex configuration.
Pedestrian-positioning technology based on the foot-mounted micro inertial measurement unit (MIMU) plays an important role in the field of indoor navigation and has received extensive attention in recent years. However, the positioning accuracy of the inertial-based pedestrian-positioning method is rapidly reduced because of the relatively low measurement accuracy of the measurement sensor. The zero-velocity update (ZUPT) is an error correction method which was proposed to solve the cumulative error because, on a regular basis, the foot is stationary during the ordinary gait; this is intended to reduce the position error growth of the system. However, the traditional ZUPT has poor performance because the time of foot touchdown is short when the pedestrians move faster, which decreases the positioning accuracy. Considering these problems, a forward and reverse calculation method based on the adaptive zero-velocity interval adjustment for the foot-mounted MIMU location method is proposed in this paper. To solve the inaccuracy of the zero-velocity interval detector during fast pedestrian movement where the contact time of the foot on the ground is short, an adaptive zero-velocity interval detection algorithm based on fuzzy logic reasoning is presented in this paper. In addition, to improve the effectiveness of the ZUPT algorithm, forward and reverse multiple solutions are presented. Finally, with the basic principles and derivation process of this method, the MTi-G710 produced by the XSENS company is used to complete the test. The experimental results verify the correctness and applicability of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.