This paper evaluates the efficacy of the recursive least squares (RLS) in adaptive noise canceller (RLS-ANC) for fast extraction of somatosensory evoked potentials (SEPs). The RLS-ANC method was verified by simulation of electroencephalography (EEG) and Gaussian noise contaminated SEP signals at different signal-to-noise ratios (SNRs). RLS was found to converge faster than the least mean squares (LMS) algorithm in ANC, i.e. SEP extraction by RLS-ANC required fewer trials than LMS-ANC. Experimental results showed that RLS-ANC with less than 50 trials could provide similar performance in SEP extraction to those extracted by the conventional ensemble averaging with 500 trials even at SNR of-20dB.
Conventional multi-sensor multi-target multi-Bernoulli (MS-MeMBer) filters are based on the assumption that each target produces at most one measurement per time step. However, this assumption is not always reasonable in practice as an extended target can generate multiple measurements per step due to the recent improvement in the sensor resolution. In this case, a potential estimation bias may occur in the current MS-MeMBer filters. Therefore, a novel extended target MS-MeMBer filter and its Gaussian inverse Wishart mixture implementation are given in this paper. Specifically, we modify the update process of the MS-MeMBer filter by assuming that the generation of extended target measurements follows an approximate Poisson-Body model. Simulation results validate that the proposed filter can effectively estimate the shape and position of the extended target. INDEX TERMS Multi-sensor multi-target multi-Bernoulli filter, extended target, approximate Poissonbody, Gaussian inverse Wishart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.