MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins.
The basic helix-loop-helix (bHLH) proteins are a large family of transcription factors that control various developmental processes in eukaryotes, but the biological roles of most bHLH proteins are not very clear, especially in tomato. In this study, a PRE-like atypical bHLH gene was isolated and designated as SlPRE2 in tomato. SlPRE2 was highly expressed in immature-green fruits, moderately in young leaves, flowers, and mature-green fruits. To further research the function of SlPRE2, a 35 S:PRE2 binary vector was constructed and transformed into wild type tomato. The transgenic plants showed increased leaf angle and stem internode length, rolling leaves with decreased chlorophyll content. The water loss rate of detached leaves was increased in young transgenic lines but depressed in mature leaves. Besides, overexpression of SlPRE2 promoted morphogenesis in seedling development, producing light-green unripening fruits and yellowing ripen fruits with reduced chlorophyll and carotenoid accumulation in pericarps, respectively. Quantitative RT-PCR analysis showed that expression of the chlorophyll related genes, such as GOLDEN 2-LIKE and RbcS, were decreased in unripening 35
S:PRE2 fruit, and carotenoid biosynthesis-related genes PHYTOENE SYNTHASE1A and ζ-CAROTENE DESATURASE in ripening fruit were also down-regulated. These results suggest that SlPRE2 affects plant morphology and is a negative regulator of fruit pigment accumulation.
Kohlrabi (Brassica oleracea var. gongylodes L.) is an important dietary vegetable cultivated and consumed widely for the round swollen stem. Purple kohlrabi shows abundant anthocyanin accumulation in the leaf and swollen stem. Here, different kinds of anthocyanins were separated and identified from the purple kohlrabi cultivar (Kolibri) by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. In order to study the molecular mechanism of anthocyanin biosynthesis in purple kohlrabi, the expression of anthocyanin biosynthetic genes and regulatory genes in purple kohlrabi and a green cultivar (Winner) was examined by quantitative PCR. In comparison with the colorless parts in the two cultivars, most of the anthocyanin biosynthetic genes and two transcription factors were drastically upregulated in the purple tissues. To study the effects of light shed on the anthocyanin accumulation of kohlrabi, total anthocyanin contents and transcripts of associated genes were analyzed in sprouts of both cultivars grown under light and dark conditions.
Histone deacetylation is one of the well characterized post-translational modifications related to transcriptional repression in eukaryotes. The process of histone deacetylation is achieved by histone deacetylases (HDACs). Over the last decade, substantial advances in our understanding of the mechanism of fruit ripening have been achieved, but the role of HDACs in this process has not been elucidated. In our study, an RNA interference (RNAi) expression vector targeting SlHDA1 was constructed and transformed into tomato plants. Shorter fruit ripening time and decreased storability were observed in SlHDA1 RNAi lines. The accumulation of carotenoid was increased through an alteration of the carotenoid pathway flux. Ethylene content, ethylene biosynthesis genes (ACS2, ACS4 and ACO1, ACO3) and ripening-associated genes (RIN, E4, E8, Cnr, TAGL1, PG, Pti4 and LOXB) were significantly up-regulated in SlHDA1 RNAi lines. In addition, the expression of fruit cell wall metabolism genes (HEX, MAN, TBG4, XTH5 and XYL) was enhanced compared with wild type. Furthermore, SlHDA1 RNAi seedlings displayed shorter hypocotyls and were more sensitive to ACC (1-aminocyclopropane-1-carboxylate) than the wild type. The results of our study indicate that SlHDA1 functions as a negative regulator of fruit ripening by affecting ethylene synthesis and carotenoid accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.