SummaryAs the premier model organism in biomedical research, the laboratory mouse shares the majority of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications, and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.
Transposable elements (TEs) have been shown to contain functional binding sites for certain transcription factors (TFs). However, the extent to which TEs contribute to the evolution of TF binding sites is not well known. We comprehensively mapped binding sites for 26 pairs of orthologous TFs in two pairs of human and mouse cell lines (representing two cell lineages), along with epigenomic profiles, including DNA methylation and six histone modifications. Overall, we found that 20% of binding sites were embedded within TEs. This number varied across different TFs, ranging from 2% to 40%. We further identified 710 TF-TE relationships in which genomic copies of a TE subfamily contributed a significant number of binding peaks for a TF, and we found that LTR elements dominated these relationships in human. Importantly, TEderived binding peaks were strongly associated with open and active chromatin signatures, including reduced DNA methylation and increased enhancer-associated histone marks. On average, 66% of TE-derived binding events were cell type-specific with a cell type-specific epigenetic landscape. Most of the binding sites contributed by TEs were speciesspecific, but we also identified binding sites conserved between human and mouse, the functional relevance of which was supported by a signature of purifying selection on DNA sequences of these TEs. Interestingly, several TFs had significantly expanded binding site landscapes only in one species, which were linked to species-specific gene functions, suggesting that TEs are an important driving force for regulatory innovation. Taken together, our data suggest that TEs have significantly and continuously shaped gene regulatory networks during mammalian evolution.
To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.
Summary To broaden our understanding of the evolution of gene regulation mechanisms, we generated occupancy profiles for 34 orthologous transcription factors (TFs) in human-mouse erythroid progenitor, lymphoblast, and embryonic stem cell lines. By combining the genome-wide TF occupancy repertoires, associated epigenetic signals, and TF co-association patterns, we deduced several evolutionary principles of gene regulatory features operating since the mouse and human lineages diverged. The genomic distribution profiles, primary binding motifs, chromatin states, and DNA methylation preferences are well conserved for TF occupied sequences (TF OSs). However, the extent to which orthologous DNA segments are bound by orthologous TFs varies both among TFs and with genomic location: binding at promoters is more highly conserved than binding at distal elements. Importantly, occupancy conserved TF OSs tend to be pleiotropic; they function in multiple tissues and also co-associate with multiple TFs. Single nucleotide variants (SNVs) at sites with potential regulatory functions are enriched in occupancy conserved TF OSs.
Rapid growth of sequencing technologies has greatly contributed to increasing our understanding of human genetics. Yet, in spite of this growth, mainstream technologies have been largely unsuccessful in resolving the diploid nature of the human genome. Here we describe statistically aided long read haplotyping (SLRH), a rapid, accurate method based on a simple experimental protocol that requires potentially as little as 30 Gbp of sequencing in addition to a standard (50x coverage) whole-genome analysis for human samples. Using this technology, we phase 99% of single-nucleotide variants in three human genomes into long haplotype blocks of 200 kbp to 1 Mbp in length. As a demonstration of the potential applications of our method, we determine allele-specific methylation patterns in a human genome and identify hundreds of differentially methylated regions that were previously unknown. Such information may offer insight into the mechanisms behind differential gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.