Aiming at the problem that a single neural network model has difficulty in accurately predicting trends of the remaining useful life of a rolling bearing, a method of predicting the remaining useful life of rolling bearings using a gated recurrent unit-deep autoregressive model (GRU-DeepAR) with an adaptive failure threshold was proposed. First, time domain and frequency domain features were extracted from the rolling bearing vibration signal. Second, its operation process was divided into a smooth operation stage and degradation stage according to the trend of the accumulated root mean square of maximum. Then, the failure threshold for different bearings were determined adaptively by the maximum of the smooth operation data. The degradation dataset of a rolling bearing was subsequently obtained. In the meantime, a GRU-DeepAR model was built to obtain predictions of the failure time and failure probability. Appropriate model parameters were determined after a large number of tests to assure the effectiveness and prediction accuracy. Finally, the trend of time series and failure times were predicted by inputting the degradation dataset into the GRU-DeepAR model. Experiments showed that the proposed method can effectively improve the accuracy of the remaining useful life prediction of a rolling bearing with good stability.
In light of the problems of a single vibration feature containing limited information on the degradation of rolling bearings, the redundant information in high-dimensional feature sets inaccurately reflecting the reliability of rolling bearings in service, and assessments of the degradation performance being disturbed by outliers and false fluctuations in the signal, this study proposes a method of assessing rolling bearings’ performance in terms of degradation using adaptive sensitive feature selection and multi-strategy optimized support vector data description (SVDD). First, a high-dimensional feature set of vibration signals from rolling bearings was extracted. Second, a method combining the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) and K-medoids was used to comprehensively evaluate the features with multiple evaluation indicators and to adaptively select better degradation features to construct the sensitive feature set. Next, multi-strategy optimization of the SVDD model was carried out by introducing the autocorrelation kernel regression (AAKR) and a multi-kernel function to improve the ability of the evaluation model to overcome outliers and false fluctuations. Through validation, it could be seen that the method in this study uses samples of rolling bearings in the healthy early stage to establish the evaluation model, which can adaptively determine the starting point of the bearing’s degradation. The stability and accuracy of the model were effectively improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.