Increasing energy costs and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. Major efforts to this end are focused on the microbial production of high-energy fuels by cost-effective 'consolidated bioprocesses'. Fatty acids are composed of long alkyl chains and represent nature's 'petroleum', being a primary metabolite used by cells for both chemical and energy storage functions. These energy-rich molecules are today isolated from plant and animal oils for a diverse set of products ranging from fuels to oleochemicals. A more scalable, controllable and economic route to this important class of chemicals would be through the microbial conversion of renewable feedstocks, such as biomass-derived carbohydrates. Here we demonstrate the engineering of Escherichia coli to produce structurally tailored fatty esters (biodiesel), fatty alcohols, and waxes directly from simple sugars. Furthermore, we show engineering of the biodiesel-producing cells to express hemicellulases, a step towards producing these compounds directly from hemicellulose, a major component of plant-derived biomass.
We illustrate the use of a PCR-based method by which the genomic DNA of a microorganism can be rapidly queried for the presence of type I modular polyketide synthase genes to clone and characterize, by sequence analysis and gene disruption, a major portion of the geldanamycin production gene cluster from Streptomyces hygroscopicus var. geldanus NRRL 3602.
Gene clusters for biosynthesis of the fungal polyketides hypothemycin and radicicol from Hypomyces subiculosus and Pochonia chlamydosporia, respectively, were sequenced. Both clusters encode a reducing polyketide synthase (PKS) and a nonreducing PKS like those in the zearalenone cluster of Gibberella zeae, plus enzymes with putative post-PKS functions. Introduction of an O-methyltransferase (OMT) knockout construct into H. subiculosus resulted in a strain with increased production of 4-O-desmethylhypothemycin, but because transformation of H. subiculosus was very difficult, we opted to characterize hypothemycin biosynthesis using heterologous gene expression. In vitro, the OMT could methylate various substrates lacking a 4-O-methyl group, and the flavin-dependent monooxygenase (FMO) could epoxidate substrates with a 1,2 double bond. The glutathione S-transferase catalyzed cis-trans isomerization of the 7,8 double bond of hypothemycin. Expression of both hypothemycin PKS genes (but neither gene alone) in yeast resulted in production of trans-7,8-dehydrozearalenol (DHZ). Adding expression of OMT, expression of FMO, and expression of cytochrome P450 to the strain resulted in methylation, 1,2-epoxidation, and hydroxylation of DHZ, respectively. The radicicol gene cluster encodes halogenase and cytochrome P450 homologues that are presumed to catalyze chlorination and epoxidation, respectively. Schemes for biosynthesis of hypothemycin and radicicol are proposed. The PKSs encoded by the two clusters described above and those encoded by the zearalenone cluster all synthesize different products, yet they have significant sequence identity. These PKSs may provide a useful system for probing the mechanisms of fungal PKS programming.Hypothemycin and structurally related compounds are resorcylic acid lactones (RALs) that are produced by Hypomyces subiculosus and other fungi (1,7, 14,25,26,28,43). The structures of some naturally occurring RALs are shown in Fig.
R1128 substances are anthraquinone natural products that were previously reported as non-steroidal estrogen receptor antagonists with in vitro and in vivo potency approaching that of tamoxifen. From a biosynthetic viewpoint, these polyketides possess structurally interesting features such as an unusual primer unit that are absent in the well studied anthracyclic and tetracyclic natural products. The entire R1128 gene cluster was cloned and expressed in Streptomyces lividans, a genetically well developed heterologous host. In addition to R1128C, a novel optically active natural product, designated HU235, was isolated. Nucleotide sequence analysis of the biosynthetic gene cluster revealed genes encoding two ketosynthases, a chain length factor, an acyl transferase, three acetyl-CoA carboxylase subunits, two cyclases, two oxygenases, an amidase, and remarkably, two acyl carrier proteins. Feeding studies indicate that the unusual 4-methylvaleryl side chain of R1128C is derived from valine. Together with the absence of a dedicated ketoreductase, dehydratase, or enoylreductase within the R1128 gene cluster, this suggests a functional link between fatty acid biosynthesis and R1128 biosynthesis in the engineered host. Specifically, we propose that the R1128 synthase recruits four subunits from the endogenous fatty acid synthase during the biosynthesis of this family of pharmacologically significant natural products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.