The pore-throat radius of the shale oil reservoir is extremely small, and it is difficult to accurately obtain the absolute permeability and oil–water two-phase relative permeability of the actual oil reservoir through conventional core experiments. However, these parameters are very important for reservoir numerical simulation. In this paper, a method for characterizing flow parameters based on a pore network model that considers differential pressure flow and diffusion flow is proposed. Firstly, a digital core was reconstructed using focused ion beam scanning electron microscopy (FIB-SEM) from the Gulong shale reservoir in the Songliao Basin, China, and a pore network model was extracted. Secondly, quasi-static single-phase flow and two-phase flow equations considering diffusion were established in the pore network model. Finally, pore-throat parameters, absolute permeability, and oil–water two-phase permeability curves were calculated, respectively. The results show that the pore-throat distribution of the Gulong shale reservoir is mainly concentrated in the nanometer scale; the mean pore radius is 87 nm, the mean throat radius is 41 nm, and the mean coordination number is 3.97. The calculated permeability considering diffusion is 0.000124 mD, which is approximately twice the permeability calculated without considering diffusion. The irreducible water saturation of the Gulong shale reservoir is approximately 0.4, and the residual oil saturation is approximately 0.35. The method proposed in this paper can provide an important approach for characterizing the flow parameters of similar shale oil reservoirs.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Injection water temperature is often different from that of the reservoir during water injection development in the tight reservoir. Temperature change causes different fluid properties and oil-water interface properties, which further affects the imbibition process. In this paper, a matrix-fracture non-isothermal oil-water imbibition flow model in tight reservoirs is established and solved by the finite element method based on the phase-field method. The ideal inhomogeneous rock structure model was used to study the influence of a single factor on the imbibition. The actual rock structure model was used to study the influence of temperature. The mechanism of temperature influence in the process of imbibition is studied from the micro-level. It is found that the imbibition of matrix-fracture is a process in which the water enters the matrix along with the small pores, and the oil is driven into the macropores and then into the fractures. Temperature affects the imbibition process by changing the oil-water contact angle, oil-water interfacial tension, and oil-water viscosity ratio. Reducing oil-water contact angle and oil-water viscosity ratio and increasing oil-water interfacial tension are conducive to the imbibition process. The increase in injection water temperature is usually beneficial to the occurrence of the imbibition. Moreover, the actual core structure imbibition degree is often lower than that of the ideal core structure. The inhomogeneous distribution of rock particles has a significant influence on imbibition. This study provides microscale theoretical support for seeking reasonable injection velocity, pressure gradient, injection temperature, and well-shutting time in the field process. It provides a reference for the formulation of field process parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.