We introduce an intuitive measure of genuine multipartite entanglement which is based on the well-known concurrence. We show how lower bounds on this measure can be derived that also meet important characteristics of an entanglement measure. These lower bounds are experimentally implementable in a feasible way enabling quantification of multipartite entanglement in a broad variety of cases.
We establish a general operational one-to-one mapping between coherence measures and entanglement measures: Any entanglement measure of bipartite pure states is the minimum of a suitable coherence measure over product bases. Any coherence measure of pure states, with extension to mixed states by convex roof, is the maximum entanglement generated by incoherent operations acting on the system and an incoherent ancilla. Remarkably, the generalized CNOT gate is the universal optimal incoherent operation. In this way, all convex-roof coherence measures, including the coherence of formation, are endowed with (additional) operational interpretations. By virtue of this connection, many results on entanglement can be translated to the coherence setting, and vice versa. As applications, we provide tight observable lower bounds for generalized entanglement concurrence and coherence concurrence, which enable experimentalists to quantify entanglement and coherence of the maximal dimension in real experiments.
Genuine-multipartite-entanglement (GME) concurrence is a measure of genuine multipartite entanglement that generalizes the well-known notion of concurrence. We define an observable for GME concurrence. The observable permits us to avoid full state tomography and leads to different analytic lower bounds. By means of explicit examples we show that entanglement criteria based on the bounds have a better performance with respect to the known methods.
Incompatible observables can be approximated by compatible observables in joint measurement or measured sequentially, with constrained accuracy as implied by Heisenberg's original formulation of the uncertainty principle. Recently, Busch, Lahti, and Werner proposed inaccuracy trade-off relations based on statistical distances between probability distributions of measurement outcomes [P. Busch et al., Phys. Rev. Lett. 111, 160405 (2013); P. Busch et al., Phys. Rev. A 89, 012129 (2014)]. Here we reformulate their theoretical framework, derive an improved relation for qubit measurement, and perform an experimental test on a spin system. The relation reveals that the worst-case inaccuracy is tightly bounded from below by the incompatibility of target observables, and is verified by the experiment employing joint measurement in which two compatible observables designed to approximate two incompatible observables on one qubit are measured simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.