The apple buprestid beetle, Agrilus mali Matsumura, is an invasive pest causing significant damages to rare wild apple forests of Xinjiang. The morphology, abundance and distribution of antennal sensilla in both sexes of this pest were examined. We found that the antennae of A. mali females were longer than those of males. Five types of antennal sensilla were characterized, including trichodea (subtypes Tr.1, Tr.2, and Tr.3), chaetica (subtypes Sc.1, Sc.2, Sc.3, and Sc.4), basiconica (subtypes Ba. 1, Ba. 2, Ba. 3 and Ba.4), Böhm bristles (subtypes BB. 1, and BB. 2), and multiporous grooved sensilla. The most abundant sensilla of Ba.2 tended to occur mainly on flagellomeres 5–8 in both sexes. The last three flagellomeres tended to have the most abundant Tr.1 in both sexes. Overall, the abundance and distribution of these sensilla appeared to be highly conserved in both sexes, and their olfactory organs seemed to cluster on flagellomeres 6–8. However, some sex dimorphisms were also observed. Tr.3 and BB.2 were found only in females. Sensilla of Sc.2 were found on the pedicel and first two flagellomeres only in males. When compared with males, females showed a higher number of Sc.3, but a lower number of Sc.4 on the pedicel. These results indicate that contact cues could be important in intersexual communication in A. mali. The functional roles of these sensilla and their implications in A. mali behaviors are discussed, and further studies of identified chemosensitive sensilla can provide a foundation for developing semiochemical-based management strategies.
Phenotypic plasticity has recently been considered a powerful means of adaptation, but its relationships with corresponding life-history characters and plant specialization levels of insects have been controversial. To address the issues, Sitobion avenae clones from three plants in two areas were compared. Varying amounts of life-history trait plasticity were found among S. avenae clones on barley, oat and wheat. In most cases, developmental durations and their corresponding plasticities were found to be independent, and fecundities and their plasticities were correlated characters instead. The developmental time of first instar nymphs for oat and wheat clones, but not for barley clones, was found to be independent from its plasticity, showing environment-specific effects. All correlations between environments were found to be positive, which could contribute to low plasticity in S. avenae. Negative correlations between trait plasticities and fitness of test clones suggest that lower plasticity could have higher adaptive value. Correlations between plasticity and specialization indices were identified for all clones, suggesting that plasticity might evolve as a by-product of adaptation to certain environments. The divergence patterns of life-history plasticities in S. avenae, as well as the relationships among plasticity, specialization and fitness, could have significant implications for evolutionary ecology of this aphid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.