Nanocrystalline soft magnetic alloy powders are promising microwave absorbents since they can work at diverse frequencies and are stable in harsh environments. However, when the alloy powders are in austenite phase, they are out of the screen for microwave absorbents due to their paramagnetic nature. In this work, we reported a strategy to enable strong microwave absorption in nanocrystalline austenite FeCoCr powders by deformation-thermal co-induced ferromagnetism via attritor ball milling and subsequent heat treatment. Results showed that significant austenite-to-martensite transformation in the FeCoCr powders was achieved during ball milling, along with the increase in shape anisotropy from spherical to flaky. The saturation magnetization followed parabolic kinetics during ball milling and rose from 1.43 to 109.92 emu/g after milling for 4 h, while it exhibited a rapid increase to 181.58 emu/g after subsequent heat treatment at 500 °C. A considerable increase in complex permeability and hence magnetic loss capability was obtained. With appropriate modulation of complex permittivity, the resultant absorbents showed a reflection loss of below −6 dB over 8~18 GHz at thickness of 1 mm and superior stability at 300 °C. Our strategy can broaden the material selection for microwave absorbents by involving Fe-based austenite alloys and simply recover the ferromagnetism of industrial products made without proper control of the crystalline phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.