Sleep stage classification plays an important role in the diagnosis of sleep-related diseases. However, traditional automatic sleep stage classification is quite challenging because of the complexity associated with the establishment of mathematical models and the extraction of handcrafted features. In addition, the rapid fluctuations between sleep stages often result in blurry feature extraction, which might lead to an inaccurate assessment of electroencephalography (EEG) sleep stages. Hence, we propose an automatic sleep stage classification method based on a convolutional neural network (CNN) combined with the fine-grained segment in multiscale entropy. First, we define every 30 seconds of the multichannel EEG signal as a segment. Then, we construct an input time series based on the fine-grained segments, which means that the posterior and current segments are reorganized as an input containing several segments and the size of the time series is decided based on the scale chosen depending on the fine-grained segments. Next, each segment in this series is individually put into the designed CNN and feature maps are obtained after two blocks of convolution and max-pooling as well as a full-connected operation. Finally, the results from the full-connected layer of each segment in the input time sequence are put into the softmax classifier together to get a single most likely sleep stage. On a public dataset called ISRUC-Sleep, the average accuracy of our proposed method is 92.2%. Moreover, it yields an accuracy of 90%, 86%, 93%, 97%, and 90% for stage W, stage N1, stage N2, stage N3, and stage REM, respectively. Comparative analysis of performance suggests that the proposed method is better, as opposed to that of several state-of-the-art ones. The sleep stage classification methods based on CNN and the fine-grained segments really improve a key step in the study of sleep disorders and expedite sleep research.
We explore the semantic-rich structured information derived from the knowledge graphs (KGs) associated with the user-item interactions and aim to reason out the motivations behind each successful purchase behavior. Existing works on KGs-based explainable recommendations focus purely on path reasoning based on current useritem interactions, which generally result in the incapability of conjecturing users' subsequence preferences. Considering this, we attempt to model the KGs-based explainable recommendation in sequential settings. Specifically, we propose a novel architecture called Reinforced Sequential Learning with Gated Recurrent Unit (RSL-GRU), which is composed of a Reinforced Path Reasoning Network (RPRN) component and a GRU component. RSL-GRU takes users' sequential behaviors and their associated KGs in chronological order as input and outputs potential top-N items for each user with appropriate reasoning paths from a global perspective. Our RPRN features a remarkable path reasoning capacity, which is regulated by a userconditioned derivatively action pruning strategy, a soft reward strategy based on an improved multi-hop scoring function, and a policy-guided sequential path reasoning algorithm. Experimental results on four of Amazon's large-scale datasets show that our method achieves excellent results compared with several state-of-the-art alternatives.
Powered by Editorial Manager® and ProduXion Manager® from Aries Systems CorporationAlthough the time complexity of our model is a little higher in the worst situation than Ω 2 in DAN, KPRN, and KARN, its calculation is much smaller compared with them.
Point 2.Datasets in section 5.1.1 need to be given the links or citations.Thank you for your suggestion. We add a link (https://nijianmo.github.io/amazon/index.html) to the datasets in section 5.1.1 on page 13.Noname manuscript No.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.