The zero-phonon transition rate of a nitrogen-vacancy center is enhanced by a factor of ∼ 70 by coupling to a photonic crystal resonator fabricated in monocrystalline diamond using standard semiconductor fabrication techniques. Photon correlation measurements on the spectrally filtered zero-phonon line show antibunching, a signature that the collected photoluminescence is emitted primarily by a single nitrogen-vacancy center. The linewidth of the coupled nitrogen-vacancy center and the spectral diffusion are characterized using high-resolution photoluminescence and photoluminescence excitation spectroscopy.Nitrogen-vacancy (NV) centers in diamond represent one of the best test-beds for future quantum photonic technologies [1, 2] due to their outstanding properties as spin qubits [3] that can be coupled to optical photons [4]. Applications include quantum information [5] and electro-magnetic field sensing [6][7][8]. For quantum information applications, multiple NV centers need to be interconnected. One approach relies on integrating NVs in photonic networks, where large-scale entanglement between NV centers is created using interference of identical photons at the zero-phonon line (ZPL) frequency. However, in bulk diamond the ZPL transition accounts for only a few percent of the NV emission. Here we report ∼ 70 fold enhancement of the transition rate through the ZPL for a single NV coupled to a photonic crystal cavity in monocrystalline diamond. These cavities are fabricated using scalable semiconductor fabrication techniques and can be further coupled into photonic networks [2].The spontaneous emission rate enhancement of a particular dipole transition i of an emitter coupled to a microresonator relative to the uniform dielectric medium of the resonator is enhanced by the factor τ0where 1/τ 0 is the emission rate in the uniform dielectric medium, 1/τ leak is the emission rate outside the cavity mode, and
The mechanical properties of skin are important tissue parameters that are useful for understanding skin patho-physiology, which can aid disease diagnosis and treatment. This paper presents an innovative method that employs phase-sensitive spectral-domain optical coherence tomography (PhS-OCT) to characterize the biomechanical properties of skin by measuring surface waves induced by short impulses from a home-made shaker. Experiments are carried out on single and double-layer agar-agar phantoms, of different concentrations and thickness, and on in vivo human skin, at the forearm and the palm. For each experiment, the surface wave phase-velocity dispersion curves were calculated, from which the elasticity of each layer of the sample was determined. It is demonstrated that the experimental results agree well with previous work. This study provides a novel combination of PhS-OCT technology with a simple and an inexpensive mechanical impulse surface wave stimulation that can be used to non-invasively evaluate the mechanical properties of skin in vivo, and may offer potential use in clinical situations.
Photodetectors fabricated on microstructured silicon are reported. The photodetectors exhibited high photoresponse; at 3V bias, the responsivities were 92A∕W at 850nm and 119A∕W at 960nm. At wavelengths longer than 1.1μm, the photodetectors still showed strong photoresponse. A generation-recombination gain mechanism has been proposed to explain the photoresponse of these photodiodes. From measurements of the noise current density, the calculated gain was approximately 1200 at 3V bias.
We demonstrate an absolute magnetometer based on quantum beats in the ground state of nitrogen-vacancy centers in diamond. We show that, by eliminating the dependence of spin evolution on the zero-field splitting D, the magnetometer is immune to temperature fluctuation and strain inhomogeneity. We apply this technique to measure low-frequency magnetic field noise by using a single nitrogen-vacancy center located within 500 nm of the surface of an isotopically pure (99.99% 12C) diamond. The photon-shot-noise limited sensitivity achieves 38 nT/sqrt[Hz] for 4.45 s acquisition time, a factor of sqrt[2] better than the implementation which uses only two spin levels. For long acquisition times (>10 s), we realize up to a factor of 15 improvement in magnetic sensitivity, which demonstrates the robustness of our technique against thermal drifts. Applying our technique to nitrogen-vacancy center ensembles, we eliminate dephasing from longitudinal strain inhomogeneity, resulting in a factor of 2.3 improvement in sensitivity.
We report electrical tuning by the Stark effect of the excited-state structure of single nitrogen-vacancy (NV) centers located ≲100 nm from the diamond surface. The zero-phonon line (ZPL) emission frequency is controllably varied over a range of 300 GHz. Using high-resolution emission spectroscopy, we observe electrical tuning of the strengths of both cycling and spin-altering transitions. Under resonant excitation, we apply dynamic feedback to stabilize the ZPL frequency. The transition is locked over several minutes and drifts of the peak position on timescales ≳100 ms are reduced to a fraction of the single-scan linewidth, with standard deviation as low as 16 MHz (obtained for an NV in bulk, ultrapure diamond). These techniques should improve the entanglement success probability in quantum communications protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.