Abstract-In this paper, we propose an efficient rule-based heuristic to solve asset-based dynamic weapon-target assignment (DWTA) problems. The main idea of the proposed heuristic is to utilize the domain knowledge of DWTA problems to directly achieve weapon assignment, without large number of function evaluations. We update the saturation states of constraints in the assignment process to guarantee the feasibility of generated solutions. For the purpose of testing the performance of the proposed heuristic, we build a general Monte Carlo simulation-based DWTA framework. For comparison, we also employ a Monte Carlo method (MCM) to make DWTA decisions in different defense scenarios. From simulations with DWTA instances under different scales, the heuristic has obvious advantages over the MCM with regard to solution quality and computation time. The proposed method can solve large-scale DWTA problems (e.g., those including 100 weapons, 100 targets, and four defense stages) within only a few seconds.Index Terms-Combinatorial optimization, constraint handling, decision making, dynamic weapon-target assignment (DWTA), heuristic, military operations.
This paper addresses a particular pursuit-evasion game, called as "fishing game" where a faster evader attempts to pass the gap between two pursuers. We are concerned with the conditions under which the evader or pursuers can win the game. This is a game of kind in which an essential aspect, barrier, separates the state space into disjoint parts associated with each player's winning region. We present a method of explicit policy to construct the barrier. This method divides the fishing game into two subgames related to the included angle and the relative distances between the evader and the pursuers, respectively, and then analyzes the possibility of capture or escape for each subgame to ascertain the analytical forms of the barrier. Furthermore, we fuse the games of kind and degree by solving the optimal control strategies in the minimum time for each player when the initial state lies in their winning regions. Along with the optimal strategies, the trajectories of the players are delineated and the upper bounds of their winning times are also derived.
Inspired by the hunting and foraging behaviors of group predators, this paper addresses a class of multi-player pursuit-evasion games with one superior evader, who moves faster than the pursuers. We are concerned with the conditions under which the pursuers can capture the evader, involving the minimum number and initial spatial distribution required as well as the cooperative strategies of the pursuers. We present some necessary or sufficient conditions to regularize the encirclement formed by the pursuers to the evader. Then we provide a cooperative scheme for the pursuers to maintain and shrink the encirclement until the evader is captured. Finally, we give some examples to illustrate the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.