In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Pharmacokinetics (PK), as a significant part of pharmacology, runs through the overall process of the preclinical and clinical research on drugs and plays a significant role in determining the material basis of efficacy and mechanism research. However, due to the limitations of classical PK, cellular PK was put forward at the historic moment and developed rapidly. Many novel and original technologies have been innovatively applied to the cellular PK research, thereby providing a powerful technical support. As a novel field of PK research, cellular PK expands the research object and enriches the theoretical framework of PK. It provides a new perspective for elucidating the mechanism of drug action and the dynamic process of drug in the body. Furthermore, it provides a scientific basis and guiding significance for the development of new drugs and the guidance of clinical rational drug use. Cellular PK can explain the dynamic process of certain drugs (e.g., antineoplastic drugs and antibiotics) and the disposition kinetics characteristics in some specific tissues (e.g., brain and tumor) in a clearer and more accurate manner. It is a beneficial supplement and perfection of traditional PK. In the future, traditional and cellular PKs will complement each other well and improve into an all-around research system in drug developments. Briefly, this paper reviews the conceptual development of cellular PK and key associated technologies, comments its main functions and applications, and looks forward to the important pioneering significance and promising value for the development of PK.
Pharmacokinetic assessment of drug disposition processes in vivo is critical in predicting pharmacodynamics and toxicology to reduce the risk of inappropriate drug development. The blood–brain barrier (BBB), a special physiological structure in brain tissue, hinders the entry of targeted drugs into the central nervous system (CNS), making the drug concentrations in target tissue correlate poorly with the blood drug concentrations. Additionally, once non-CNS drugs act directly on the fragile and important brain tissue, they may produce extra-therapeutic effects that may impair CNS function. Thus, an intracerebral pharmacokinetic study was developed to reflect the disposition and course of action of drugs following intracerebral absorption. Through an increasing understanding of the fine structure in the brain and the rapid development of analytical techniques, cerebral pharmacokinetic techniques have developed into non-invasive imaging techniques. Through non-invasive imaging techniques, molecules can be tracked and visualized in the entire BBB, visualizing how they enter the BBB, allowing quantitative tools to be combined with the imaging system to derive reliable pharmacokinetic profiles. The advent of imaging-based pharmacokinetic techniques in the brain has made the field of intracerebral pharmacokinetics more complete and reliable, paving the way for elucidating the dynamics of drug action in the brain and predicting its course. The paper reviews the development and application of imaging technologies for cerebral pharmacokinetic study, represented by optical imaging, radiographic autoradiography, radionuclide imaging and mass spectrometry imaging, and objectively evaluates the advantages and limitations of these methods for predicting the pharmacodynamic and toxic effects of drugs in brain tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.