The effect of volcanic aerosols on China's monsoon precipitation over the past 700 years has been studied using two independently compiled histories of volcanism combined with the Monsoon Asia Drought Atlas. For both reconstructions, four categories of eruptions are distinguished based on the character of their Northern Hemisphere (NH) injection; then Superposed Epoch Analysis (SEA) with a 10,000 Monte Carlo resampling procedure is undertaken for each category and also each individual grid. Results show a statistically significant (at 90% confidence level) drying trend over mainland China from year 1 to year 4 after the eruptions, and the more sulfate aerosol that is injected into the NH stratosphere, the more severe this drying trend. In comparison, a minor wetting trend is observed in the years following Southern Hemisphere-only injections. Results from spatial distribution of the SEA show (1) a southward movement of the significant dry areas in eastern China from year 0 to year 2 after volcanic perturbations that are either equal to or double the size of the 1991 Mount Pinatubo eruption (15 T sulfate aerosols in NH) and (2) northeast and northwest China experienced substantial droughts in years 2 to 5. These results are in good agreement with a SEA analysis of the Chinese Historical Drought Disaster Index compiled from historical meteorological records. Our findings illustrate the important role stratospheric aerosols have played in altering China's precipitation during the summer monsoon season and can shed new light on the possible effects that stratospheric geoengineering may have on China's precipitation.
Abstract. Explosive volcanic eruptions influence near-surface temperature and precipitation especially in the monsoon regions, but the impact varies with different eruption seasons and latitudes. To study this variability, two groups of ensemble simulations are performed with volcanic eruptions in June and December at 0∘ representing an equatorial eruption (EQ) and at 30∘ N and 30∘ S representing Northern and Southern Hemisphere eruptions (NH and SH). Results show significant cooling especially in areas with enhanced volcanic aerosol content. Compared to the EQ eruption, stronger cooling emerges in the Northern Hemisphere after the NH eruption and in the Southern Hemisphere after the SH eruption. Stronger precipitation variations occur in the tropics than in the high latitudes. Summer and winter eruptions lead to similar hydrological impacts. The NH and the SH eruptions have reversed climate impacts, especially in the regions of the South Asian summer monsoon (SASM). After the NH eruption, direct radiative effects of volcanic aerosols induce changes in the interhemispheric and land–sea thermal contrasts, which move the intertropical convergence zone (ITCZ) southward and weaken the SASM. This reduces the moisture transport from the ocean and reduces cloud formation and precipitation in India. The subsequent radiative feedbacks due to regional cloud cover lead to warming in India. After the SH eruption, vice versa, a northward movement of the ITCZ and strengthening of the SASM, along with enhanced cloud formation, lead to enhanced precipitation and cooling in India. This emphasizes the sensitivity of regional climate impacts of volcanic eruptions to eruption latitude, which relates to the dynamical response of the climate system to radiative effects of volcanic aerosols and the subsequent regional physical feedbacks. Our results indicate the importance of considering dynamical and physical feedbacks to understand the mechanism behind regional climate responses to volcanic eruptions and may also shed light on the climate impact and potential mechanisms of stratospheric aerosol engineering.
Proxy-model comparisons show large discrepancies in the impact of volcanic aerosols on the hydrology of the Asian monsoon region (AMR). This was mostly imputed to uncertainties arising from the use of a single model in previous studies. Here we compare two groups of CMIP5 multimodel ensemble mean (MMEM) with the tree-ring-based reconstruction Monsoon Asia Drought Atlas (MADA PDSI), to examine their reliability in reproducing the hydrological effects of the volcanic eruptions in 1300-1850 CE. Time series plots indicate that the MADA PDSI and the MMEMs agree on the significant drying effect of volcanic perturbation over the monsoon-dominated subregion, while disparities exist over the westerlies-dominated subregion. Comparisons of the spatial patterns suggest that the MADA PDSI and the MMEMs show better agreement 1 year after the volcanic eruption than in the eruption year and in subregions where more tree-ring chronologies are available. The MADA PDSI and the CMIP5 MMEMs agree on the drying effect of volcanic eruptions in western-East Asia, South Asian summer monsoon, and northern East Asian summer monsoon (EASM) regions. Model results suggest significant wetting effect in southern EASM and western-South Asia, which agrees with the observed hydrological response to the 1991 Mount Pinatubo eruption. Analysis on model output from the Last Millennium Ensemble project shows similar hydrological responses. These results suggest that the CMIP5 MMEM is able to reproduce the impact of volcanic eruptions on the hydrology of the southern AMR.
China is the world's most populous country with only 7% of the world's arable land. Accurate assessment of the effect that future climate change may pose on grain production is essential to the sustainability of agriculture. Model variations plus uncertainties in the future climate change scenarios create a big challenge for such evaluation. In this work, we developed the statistical models for six different regions in China, using the historical yield data between 1981 and 2010 from the National Bureau of Statistics combined with meteorological station observations and analyzed the impact of climate variation (i.e., temperature and precipitation changes) on the grain yields into the 2030s, based on 28 ensemble climate predictions from six state-of-the-art Coupled Model Intercomparison Project Phase 5 (CMIP5) model outputs.Our results indicate that the four crops (i.e., rice, maize, wheat, and soybean) respond similarly to the climate variation in different regions of China, with the sensitivity to warming increasing from north to south and from inner land to coast regions. In addition, the yields of all the four crops in East and Central-South China are also positively correlated with precipitation change. Future projections with a medium greenhouse gas mitigation scenario (RCP4.5) showed that the yield of the four crops in six regions of China would increase ranging from 0.02 to 1.19 hundred ton/ha, in 2030s with respect to the 2000s. Nevertheless, adaptive implementations such as appropriately improve the irrigation infrastructure in East and Central-South China could mitigate the adverse impact from future climate change.Index Terms-China, climate change, Coupled Model Intercomparison Project Phase 5 (CMIP5), crop yield, ensemble assessment.
This is a background account and formal statement prepared by participants in the Institute for Advanced Sustainability Studies’ Climate Engineering Summer Course, held between 2 and 17 August 2014 in Potsdam, Germany.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.