Nickel has been found a key pollutant in farmlands of central and south China, and understanding of Ni toxicity in rice is of great significance in safety production of rice and remediation of Ni polluted paddy soils. The present study aimed to investigate the uptake and subcellular distribution of Ni, antioxidant production, and osmolyte accumulation of rice (Oryza sativa L., cv. yangliangyou 6) plants exposed to excessive Ni concentrations to gain an insight into Ni-induced phytotoxicity. Results revealed that exposure of rice seedlings to high Ni concentrations resulted a decline in root and shoot lengths and fresh weight (FW) and dry weight (DW) of rice plants, which are in connection with the depletion of the contents of photosynthetic pigments. Measurement of Ni concentrations in the roots and shoots showed that Ni was mainly accumulated in roots followed by shoots. Moreover, Ni was mainly deposited in soluble fraction and cell wall, than cell organelle, which suggests that both compartments act as crucial defensive barriers against Ni toxicity in rice plants. Ni also induced its toxicity by damaging oxidative metabolism, as indicated by increased level of hydrogen peroxide and malondialdehyde content. Furthermore, Ni stress also showed a desynchronized antioxidant system by increasing the activities of catalase, peroxidase, and the contents of ascorbic acid and glutathione, whereas decreasing the activity of superoxide dismutase in the roots and shoots of rice plants. Ni stress also triggered the rate of proline accumulation and decreasing the contents of soluble protein and soluble sugar. In crux, our results suggests that excessive Ni inhibited rice growth and induced oxidative stress through inducing ROS formation, while stimulated enzymatic and non-enzymatic antioxidants system appeared as adaptive mechanisms of rice plants against Ni-induced oxidative stress. Furthermore, majority of Ni was located in soluble fraction and modulation in osmolyte accumulation under Ni stress seemed to provide additional defense against oxidative stress.
A variety of remediation approaches have been applied to the heavy metals-contaminated soils, however, the immobilization of metals in co-contaminated soils still not cleared. Therefore, an incubation study was conducted to evaluate the instantaneous effects of different concentrations of biochar (BC), slag (SL) and Fe-Mn ore (FMO) on immobilization of Pb and Cd through the Toxicity Characteristic Leaching Procedure (TCLP) by following the the European Community Bureau of Reference (BCR), CaCl and NHNO. The sequential extraction of BCR showed decrease in acid soluble fractions, while the residual proportions of Pb and Cd were enhanced with increasing concentrations of SL and BC. Addition of BC significantly lowered the extractable fractions of both metals by TCLP, NHNO and CaCl as compared to SL and FMO. Among all amendments, BC incorporation into co-contaminated soil offered promising results for Pb and Cd immobilization. Overall, all amendments showed positive and long-term impact on the reclamation of co-contaminated soil with heavy metals and could deserve advance monitoring studies on a field scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.