Intermittent hypobaric hypoxia improves postischemic recovery of myocardial contractile function via redox signaling during early reperfusion. Am J Physiol Heart Circ Physiol 301: H1695-H1705, 2011. First published August 5, 2011; doi:10.1152/ajpheart.00276.2011.-Intermittent hypobaric hypoxia (IHH) protects hearts against ischemiareperfusion (I/R) injury, but the underlying mechanisms are far from clear. ROS are paradoxically regarded as a major cause of myocardial I/R injury and a trigger of cardioprotection. In the present study, we investigated whether the ROS generated during early reperfusion contribute to IHH-induced cardioprotection. Using isolated perfused rat hearts, we found that IHH significantly improved the postischemic recovery of left ventricular (LV) contractile function with a concurrent reduction of lactate dehydrogenase release and myocardial infarct size (20.5 Ϯ 5.3% in IHH vs. 42.1 Ϯ 3.8% in the normoxic control, P Ͻ 0.01) after I/R. Meanwhile, IHH enhanced the production of protein carbonyls and malondialdehyde, respective products of protein oxidation and lipid peroxidation, in the reperfused myocardium and ROS generation in reperfused cardiomyocytes. Such effects were blocked by the mitochondrial ATP-sensitive K ϩ channel inhibitor 5-hydroxydecanoate. Moreover, the IHH-improved postischemic LV performance, enhanced phosphorylation of PKB (Akt), PKC-ε, and glycogen synthase kinase-3, as well as translocation of PKC-ε were not affected by applying H 2O2 (20 mol/l) during early reperfusion but were abolished by the ROS scavengers N-(2-mercaptopropionyl-)glycine (MPG) and manganese (III) tetrakis (1-methyl-4-pyridyl)porphyrin. Furthermore, IHH-reduced lactate dehydrogenase release and infarct size were reversed by MPG. Consistently, inhibition of Akt with wortmannin and PKC-ε with εV1-2 abrogated the IHH-improved postischemic LV performance. These findings suggest that IHHinduced cardioprotection depends on elevated ROS production during early reperfusion.reactive oxygen species; ischemia-reperfusion injury EARLY REPERFUSION during evolving myocardial infarction is essential for saving the myocardium, but lethal reperfusion injury can occur and limit the beneficial effects (49). A number of cardioprotective strategies have been developed to ameliorate or retard the irreversible injury. However, the clinical translation of these strategies has failed to achieve the anticipated results (13, 34). Intermittent hypobaric hypoxia (IHH) has been shown to protect the heart against ischemia-reperfusion (I/R) injury by improving the manifestations including contractile dysfunction (3, 33), arrhythmias (31, 52), and cell death (8,27). Recently, we (48) revealed a therapeutic effect of IHH on permanent coronary artery ligation-induced myocardial infarction by attenuating infarct size, myocardial fibrosis, and apoptosis and improving cardiac performance. Because IHH is a relatively simple intervention with a longer protection duration and fewer adverse effects and may offer profound benefit to patients ...
The intracellular fibroblast growth factors (iFGF/FHFs) bind directly to cardiac voltage gated Na+ channels, and modulate their function. Mutations that affect iFGF/FHF-Na+ channel interaction are associated with arrhythmia syndromes. Although suspected to modulate other ionic currents, such as Ca2+ channels based on acute knockdown experiments in isolated cardiomyocytes, the in vivo consequences of iFGF/FHF gene ablation on cardiac electrical activity are still unknown. We generated inducible, cardiomyocyte-restricted Fgf13 knockout mice to determine the resultant effects of Fgf13 gene ablation. Patch clamp recordings from ventricular myocytes isolated from Fgf13 knockout mice showed a ~25% reduction in peak Na+ channel current density and a hyperpolarizing shift in steady-state inactivation. Electrocardiograms on Fgf13 knockout mice showed a prolonged QRS duration. The Na+ channel blocker flecainide further prolonged QRS duration and triggered ventricular tachyarrhythmias only in Fgf13 knockout mice, suggesting that arrhythmia vulnerability resulted, at least in part, from a loss of functioning Na+ channels. Consistent with these effects on Na+ channels, action potentials in Fgf13 knockout mice, compared to Cre control mice, exhibited slower upstrokes and reduced amplitude, but unexpectedly had longer durations. We investigated candidate sources of the prolonged action potential durations in myocytes from Fgf13 knockout mice and found a reduction of the transient outward K+ current (Ito). Fgf13 knockout did not alter whole-cell protein levels of Kv4.2 and Kv4.3, the Ito pore-forming subunits, but did decrease Kv4.2 and Kv4.3 at the sarcolemma. No changes were seen in the sustained outward K+ current or voltage-gated Ca2+ current, other candidate contributors to the increased action potential duration. These results implicate that FGF13 is a critical cardiac Na+ channel modulator and Fgf13 knockout mice have increased arrhythmia susceptibility in the setting of Na+ channel blockade. The unanticipated effect on Ito revealed new FGF13 properties and the unexpected lack of an effect on voltage-gated Ca2+ channels highlight potential compensatory changes in vivo not readily revealed with acute Fgf13 knockdown in cultured cardiomyocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.