SIX1 and SIX4 genes play critical roles in kidney development. We evaluated the effect of these genes on pig kidney development by generating SIX1 −/− and SIX1 −/− /SIX4 −/− pig foetuses using CRISPR/Cas9 and somatic cell nuclear transfer. We obtained 3 SIX1 −/− foetuses and 16 SIX1 −/− /SIX4 −/− foetuses at different developmental stages. The SIX1 −/− foetuses showed a migration block of the left kidney and a smaller size for both kidneys. The ureteric bud failed to form the normal branching and collecting system. Abnormal expressions of kidney development-related genes (downregulation of PAX2, PAX8, and BMP4 and upregulation of EYA1 and SALL1) were also observed in SIX1 −/− foetal kidneys and confirmed in vitro in porcine kidney epithelial cells (PK15) following SIX1 gene deletion. The SIX1 −/− /SIX4 −/− foetuses exhibited more severe phenotypes, with most foetuses showing retarded development at early stages of gestation. The kidney developed only to the initial stage of metanephros formation. These results demonstrated that SIX1 and SIX4 are key genes for porcine metanephros development. The creation of kidney-deficient porcine foetuses provides a platform for generating human kidneys inside pigs using blastocyst complementation. K E Y W O R D S blastocyst complementation, CRISPR/Cas9, kidney development, pig, SIX1, SIX4
Ferroptosis is a unique way of regulating cell death (RCD), which is quite different from other programmed cell deaths such as autophagy. It presents iron overload, accumulation of reactive oxygen species (ROS), and lipid peroxidation. A ferroptotic cell usually has an intact cell structure as well as shrinking mitochondria with decreased or vanishing cristae, concentrated membrane density, and ruptured outer membrane. Recently, increasing investigations have discovered that tumor cells have a much greater iron demand than the normal ones, making them more sensitive to ferroptosis. In other words, ferroptosis may inhibit the progress of the tumor, which can be used in the therapy of tumor patients, especially for those with chemotherapy resistance. Therefore, ferroptosis has become one hot spot in the field of tumor research in recent years. Colorectal cancer (CRC) is one common type of gastrointestinal malignancy. The incidence of CRC appears to have an upward trend year by year since the enhancement of living standards. Although surgery and chemoradiotherapy have largely improved the prognosis of patients with CRC, some patients still appear to have severe adverse reactions and drug resistance. Moreover, much research has verified that ferroptosis has a necessary association with the occurrence and progression of gastrointestinal tumors. In this review, we provide a comprehensive evaluation of the main mechanisms of iron metabolism, lipid metabolism, and amino acid metabolism involved in the occurrence of ferroptosis, as well as the research progress of ferroptosis in CRC.
Background. Macrophage-mediated inflammation plays an essential role in the development of atherosclerosis (AS). Long noncoding RNAs (lncRNAs), as crucial regulators, participate in this process. We identified that lnc-MRGPRF-6:1 was significantly upregulated in the plasma exosomes of coronary atherosclerotic disease (CAD) patients in a preliminary work. In the present study, we aim to assess the role of lnc-MRGPRF-6:1 in macrophage-mediated inflammatory process of AS. Methods. The correlation between lnc-MRGPRF-6:1 and inflammatory factors was estimated firstly in plasma exosomes of CAD patients. Subsequently, we established lnc-MRGPRF-6:1 knockout macrophage model via the CRISPR/Cas9 system. We then investigated the regulatory effects of lnc-MRGPRF-6:1 on macrophage polarization and foam cell formation. Eventually, transcriptome analysis by RNA sequencing was carried out to explore the contribution of differential genes and signaling pathways in this process. Results. lnc-MRGPRF-6:1 was highly expressed in the plasma exosomes of CAD patients and was positively correlated with the expression of inflammatory cytokines in plasma. lnc-MRGPRF-6:1 inhibition significantly reduced the formation of foam cells. The expression of lnc-MRGPRF-6:1 was upregulated in M1 macrophage, and lnc-MRGPRF-6:1 knockout decreased the polarization of M1 macrophage. lnc-MRGPRF-6:1 regulates macrophage polarization via the TLR4-MyD88-MAPK signaling pathway. Conclusions. lnc-MRGPRF-6:1 knockdown can inhibit M1 polarization of macrophage and inflammatory response through the TLR4-MyD88-MAPK signaling pathway. lnc-MRGPRF-6:1 is a vital regulator in macrophage-mediated inflammatory process of AS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.