The plasma generated by dielectric barrier discharge(DBD) with the atmosphere of lasting modifying materials, gives modification to the surfaces of FFC backsheet, which is formed by coating FFC (a tetra-fluoro based material with high content of fluorine) on the double-surfaces of polyester(PET). The research on the character of FFC backsheet before and after DBD modification is hold through a series analyzing ways, such as measuring the surface contact angles and surface energy of FFC backsheet with different plasma modification time and different DBD power density, comparing the preservation of surface energy of FFC backsheet with different storage medium and storage period, observing the surfaces of FFC backsheet through scanning electron microscope(SEM), making use of Fourier transform attenuated total reflectance infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Meanwhile, the soalr cell modules using FFC backsheet and other backsheets are tested under the condition of 85centigrade×85%RH to make comparison between FFC backsheet and other backsheets in various aspects, like the peel strength between backsheet and EVA and so on. All the tests show both the microscopic appearance and surface chemical composition of FFC backsheet is changed after the DBD plasma modification with the atmosphere of lasting modifying materials. After the DBD plasma modifications with a power density of 4.07W/cm 2 and different modification time, the water contact angle for FFC backsheet surface is reduced from 82° to 38°. Comparing with other types of backsheets as the solar cell modules encapsulant materials, FFC backsheet has obvious advantage in humit-heat aging resistant performance of the peel strength with EVA and other respects. KEYWORDSLasting modifying materials; Dielectric barrier discharge(DBD); Non-thermal plasma;Tetra-fluoro based material with high content of fluorine(FFC); Surface modification; Solar cell modules; Encapsulant materials; Peel strength with EVA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.