Chronic noise exposure has been implicated in increased risk of diabetes. However, there is limited experimental evidence of the mechanisms linking chronic noise stress and glucose metabolism. We addressed this in the present study by examining glucose metabolism, immune response, and changes in gut microbiota/host inflammatory homeostasis in rats exposed to noise for 30 consecutive days. Chronic noise exposure increased blood glucose and corticosterone levels for at least 14 days after cessation of noise. Stressed rats also exhibited elevated levels of glycogen and triglyceride in the liver and impaired hepatic insulin production via insulin-induced insulin receptor/insulin receptor substrate 1/glycogen synthase kinase 3β signalling, which persisted for 3–14 days after cessation of noise exposure. Chronic noise altered the percentage of Proteobacteria and Actinobacteria in the gut, increasing Roseburia but decreasing Faecalibacterium levels in the cecum relative to controls. Immunoglobulin A, interleukin 1β, and tumor necrosis factor α levels were also elevated in the intestine of these animals, corresponding to noise-induced abnormalities in glucose regulation and insulin sensitivity. These results suggest that lifelong environmental noise exposure could have cumulative effects on diabetes onset and development resulting from alterations in gut microbiota composition and intestinal inflammation.
Epidemiological studies have revealed that ambient fine particulate matter (PM2.5) exposure is closely associated with autism spectrum disorder (ASD). However, there is a relative paucity of laboratory data to support this epidemic finding. In order to assess the relationship between PM2.5 exposure and ASD, neonatal male Sprague-Dawley rats were chosen and exposed to PM2.5 (2 or 20 mg/kg body weight, once a day) by intranasal instillation from postnatal day 8 to 22. It was found that when exposed to PM2.5 in the early neonatal period for two weeks, both groups of the exposure rats manifested typical behavioral features of autism, including communication deficits, poor social interaction, and novelty avoidance. And, we further found, among five ASD candidate genes we chose, both the mRNA level and protein expression of SH3 and multiple ankyrin repeat domains 3 (Shank3) decreased significantly in the rat hippocampus after high dose of PM2.5 exposure. Moreover, results showed that PM2.5-exposure significantly increased the levels of proinflammatory cytokines, interleukin 1β, interleukin 6, and tumor necrosis factor alpha in the hippocampus and prefrontal cortex. The expression of glial fibrillary acidic protein and ionized calcium-binding adapter molecule, markers of astrocytes and microglial cell activation, respectively, also increased in the exposed animals. Our work provides new data on the link between postnatal exposure to ambient PM2.5 and the onset of ASD-like symptoms in human beings, and the increased inflammatory response and abnormalities in Shank3 expression in the brain may contribute to the mechanisms of PM2.5 exposure-induced ASD.
A putative etiological association exists between noise exposure and Alzheimer's disease (AD).Amyloid-β (Aβ) pathology is thought to be one of the primary initiating factors in AD. It has been further suggested that subsequent dysregulation of Aβ may play a mechanistic role in the AD-like pathophysiology associated with noise exposure. Here, we used ELISA, immunoblotting, cytokine arrays, and RT-PCR, to examine both hippocampal Aβ pathology and neuroinflammation in rats at different time points after noise exposure. We found that chronic noise exposure significantly accelerated the progressive overproduction of Aβ, which persisted for 7 to 14 days after the cessation of exposure. This effect was accompanied by up-regulated expression of amyloid precursor protein (APP) and its cleavage enzymes, β-and γ-secretases. Cytokine analysis revealed that chronic noise exposure increased levels of tumor necrosis factor-α and the receptor for advanced glycation end products, while decreasing the expression of activin A and platelet-derived growth factor-AA. Furthermore, we found persistent elevations of glial fibrillary acidic protein and ionized calciumbinding adapter molecule 1 expression that closely corresponded to the noise-induced increases in Aβ and neuroinflammation. These studies suggest that lifelong environmental noise exposure may have cumulative effects on the onset and development of AD.People are increasingly exposed to environmental noise from many sources including work, traffic, media, and household appliances. Long-term noise exposure increases the risk of physical damage and is considered a health hazard 1 . Such exposure can have physiological or even pathological effects on the classical auditory system, as well as non-lemniscal brain regions such as the hippocampus and cerebral cortex. Studies therefore suggest that chronic noise exposure may induce abnormal auditory input to the brain resulting in aberrant changes in the hippocampus and cortex 2-7 . It has been reported, for instance, that such exposure results in the persistent tau pathology observed in Alzheimer's disease (AD) 2,4,[7][8][9] . In the hippocampus, excitotoxic and metabolic insults can ultimately result in memory loss 3 . Considering
BackgroundChronic noise exposure has been associated with tau hyperphosphorylation and Alzheimer’s disease (AD)-like pathological changes, but the underlying mechanism is unknown. In this study, we explored the effects of long-term noise exposure on the corticotropin-releasing factor (CRF) system in the hippocampus and its role in noise-induced tau phosphorylation.MethodsSixty-four rats were randomly divided into the noise-exposed group and the control group, and rats in the exposure group were exposed to 95 dB SPL white noise for 30 consecutive days. The levels of CRF, CRFR1, CRFR2, and total tau and phosphorylated tau (p-tau) at Ser396 (S396) and Thr205 (T205) in the hippocampus were measured at different time points after the final noise exposure. The co-localized distribution of CRF and p-tau (T205) in the hippocampus was evaluated using double-labeling immunofluorescence.ResultsLong-term exposure to noise for 30 consecutive days significantly increased the expression of CRF and CRFR1 and their mRNAs levels in the hippocampus, which persisted for 7 days after final exposure. In contrast, CRFR2 was raised for 3–7 days following the last exposure. These alterations were also concomitant with the phosphorylation of tau at S396 and T205. Furthermore, there was co-localization of p-tau and CRF in hippocampal neurons.ConclusionChronic noise leads to long-lasting increases in the hippocampal CRF system and the hyperphosphorylation of tau in the hippocampus. Our results also provide evidence for the involvement of the CRF system in noise-induced AD-like neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.