The non-uniform corrosion of steel bars is the main factor affecting the durability of concrete. The cracking pattern of concrete due to corrosion is closely related to the distribution of the corrosion products. Research on the thickness distribution of the rust layer and the cracking pattern of concrete under different influencing factors is of great significance in the prediction of the service life of existing reinforced concrete structures and the avoidance of the premature cracking of the reinforced concrete structures to be built. This paper studies the thickness distribution of the rust layer on the surface of single and multiple corroded reinforcements under non-uniform corrosion. The electrochemical analysis of the electrified corrosion process was carried out by using the finite element analysis software, and the distribution of the current density was obtained. The effects of geometric parameters, steel bar position, and steel bar spacing and shape on the corrosion expansion cracking pattern were studied. The results indicated that as the position of the steel bar differed, the crack pattern of the concrete changed, depending on the number of corrosion peaks (i.e., the maximum thickness of the rust layer). In terms of the corner-located steel, the number of corrosion peaks varied in the cases of different geometrical parameters (i.e., the diameter of the steel bar and the distance between the steel bars and the stainless steel wire). Nevertheless, the critical corrosion degrees of the side-located and corner-located steel bars, with respect to the cracking of the outer concrete surface, were basically the same. Additionally, the ribbed steel bar presented a lower critical corrosion degree than that of the plain steel bar, while little influence was exhibited with the varying angles of the rib.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.