A large amount of surgical smoke in electrosurgery seriously deteriorates the clean environment of the operating room and can potentially harm medical staff and patients. Exploring the distribution and removal of indoor particulate matter and selecting efficient ventilation patterns are effective ways to control harmful smoke. Therefore, in this study, we combined simulations and full-scale experiments to quantitatively explore the high-concentration spatial regions of particles and compared three ventilation patterns: vertical laminar airflow (VLAF), horizontal laminar airflow (HLAF), and hybrid ventilation, wherein unidirectional airflow (UDAF) was applied to the operating table along with peripheral mixing (UDAF + mixing). We found that simple laminar flow ventilation was significantly affected by the equipment layout and air change rate (air changes per hour; ACH), and the smoke particles were distributed in large amounts in the operating area and could not be removed completely. Conversely, hybrid ventilation can work effectively, and the optimal ACH is approximately 60, which can remove nearly 72% of smoke particles. The airflow distribution in the operating room is also an important factor affecting the distribution and removal of smoke particles. Therefore, medical staff should avoid prolonged exposure to areas with high particle concentrations and particle removal paths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.