Treatment of neuropathic pain, triggered by multiple insults to the nervous system, is a clinical challenge because the underlying mechanisms of neuropathic pain development remain poorly understood 1-4 . Most treatments do not differentiate between different phases of neuropathic pain pathophysiology and simply focus on blocking neurotransmission, producing transient pain relief. Here, we report that early and late phase neuropathic pain development after nerve injury require different matrix metalloproteinases (MMPs). After spinal nerve ligation, MMP-9 shows a rapid and transient upregulation in injured DRG primary sensory neurons consistent with an early phase of neuropathic pain, whereas MMP-2 shows a delayed response in DRG satellite cells and spinal astrocytes consistent with a late phase of neuropathic pain. Local inhibition of MMP-9 via an intrathecal route inhibits the early phase of neuropathic pain, whereas inhibition of MMP-2 suppresses late phase of neuropathic pain. Further, intrathecal administration of MMP-9 or MMP-2 is sufficient to produce neuropathic pain symptoms. Following nerve injury, MMP-9 induces neuropathic pain through interleukin-1β cleavage and microglia activation at early times, whereas MMP-2 maintains neuropathic pain through interleukin-1β cleavage and astrocyte activation at later times. Inhibition of MMP may provide a novel therapeutic approach for the treatment of neuropathic pain at different phases.Matrix metalloproteinases (MMPs) are widely implicated in inflammation and tissue remodeling associated with various neurodegenerative diseases through the cleavage of the extracellular matrix proteins, cytokines, and chemokines 5-10 . We hypothesized that neuropathic pain and neuroinflammation may share similar mechanisms. Therefore, we set out to study the roles of the two major gelatinases MMP-2 and MMP-9, in the pathophysiology of neuropathic pain using a well-characterized animal model of L5 spinal nerve ligation (SNL) 11 .Since nerve injury-induced changes in the dorsal root ganglion (DRG) are essential for the generation of neuropathic pain 1 , we examined gelatinase activity in injured (L5) DRGs.
Activation of extracellular signal-regulated kinase (ERK), a mitogen activated-protein kinase (MAPK), in dorsal horn neurons contributes to inflammatory pain by transcription-dependent and -independent means. We have now investigated if ERK is activated in the spinal cord after a spinal nerve ligation (SNL) and if this contributes to the neuropathic pain-like behavior generated in this model. An L5 SNL induces an immediate (<10 min) but transient (<6 h) induction of phosphoERK (pERK) restricted to neurons in the superficial dorsal horn. This is followed by a widespread induction of pERK in spinal microglia that peaks between 1 and 3 days post-surgery. On Day 10, pERK is expressed both in astrocytes and microglia, but by Day 21 predominantly in astrocytes in the dorsal horn. In the L5 DRG SNL transiently induces pERK in neurons at 10 min, and in satellite cells on Day 10 and 21. Intrathecal injection of the MEK (ERK kinase) inhibitor PD98059 on Day 2, 10 or 21 reduces SNL-induced mechanical allodynia. Our results suggest that ERK activation in the dorsal horn, as well as in the DRG, mediates pain through different mechanisms operating in different cells at different times. The sequential activation of ERK in dorsal horn microglia and then in astrocytes might reflect distinct roles for these two subtypes of glia in the temporal evolution of neuropathic pain.
Optimal management of neuropathic pain is a major clinical challenge. We investigated the involvement of c-Jun N-terminal kinase (JNK) in neuropathic pain produced by spinal nerve ligation (SNL) (L5). SNL induced a slow (Ͼ3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.