The tumor suppressor Merlin/NF2 functions upstream of the core Hippo pathway kinases Lats1/2 and Mst1/2, as well as the nuclear E3 ubiquitin ligase CRL4DCAF1. Numerous mutations of Merlin have been identified in Neurofibromatosis type 2 and other cancer patients. Despite more than two decades of research, the upstream regulator of Merlin in the Hippo pathway remains unknown. Here we show by high-resolution crystal structures that the Lats1/2-binding site on the Merlin FERM domain is physically blocked by Merlin's auto-inhibitory tail. Angiomotin binding releases the auto-inhibition and promotes Merlin's binding to Lats1/2. Phosphorylation of Ser518 outside the Merlin's auto-inhibitory tail does not obviously alter Merlin's conformation, but instead prevents angiomotin from binding and thus inhibits Hippo pathway kinase activation. Cancer-causing mutations clustered in the angiomotin-binding domain impair angiomotin-mediated Merlin activation. Our findings reveal that angiomotin and Merlin respectively interface cortical actin filaments and core kinases in Hippo signaling, and allow construction of a complete Hippo signaling pathway.
Background The high cost and insufficient supply of human papillomavirus (HPV) vaccines have slowed the pace of controlling cervical cancer. A phase III clinical trial was conducted to evaluate the efficacy, safety, and immunogenicity of a novel Escherichia coli-produced bivalent HPV-16/18 vaccine. Methods A multicenter, randomized, double-blind trial started on November 22, 2012 in China. In total, 7372 eligible women aged 18–45 years were age-stratified and randomly assigned to receive three doses of the test or control (hepatitis E) vaccine at months 0, 1, and 6. Co-primary endpoints included high-grade genital lesions and persistent infection (over 6 months) associated with HPV-16/18. The primary analysis was performed on a per-protocol susceptible population of individuals who were negative for relevant HPV type-specific neutralizing antibodies (at day 0) and DNA (at day 0 through month 7) and who received three doses of the vaccine. This report presents data from a prespecified interim analysis used for regulatory submission. Results In the per-protocol cohort, the efficacies against high-grade genital lesions and persistent infection were 100.0% (95% confidence interval = 55.6% to 100.0%, 0 of 3306 in the vaccine group vs 10 of 3296 in the control group) and 97.8% (95% confidence interval = 87.1% to 99.9%, 1 of 3240 vs 45 of 3246), respectively. The side effects were mild. No vaccine-related serious adverse events were noted. Robust antibody responses for both types were induced and persisted for at least 42 months. Conclusions The E coli-produced HPV-16/18 vaccine is well tolerated and highly efficacious against HPV-16/18–associated high-grade genital lesions and persistent infection in women.
Highlights d Kibra WW tandem domains bind to Dendrin with lownanomolar affinity d Structure of Kibra WW domains bound to Dendrin PY motifs reveals the binding mechanism d Disruption of the Kibra/Dendrin interaction impairs learning and memory in mice d A Kibra mutation associated with Tourette syndrome causes defects in Dendrin binding
MyD88 adaptor-like protein (Mal) is a crucial adaptor that acts as a bridge to recruit the MyD88 molecule to activated TLR4 receptors in response to invading pathogens. The specific assembly of the Toll/interleukin-1 receptor (TIR) domains of TLR4, Mal and MyD88 is responsible for proper signal transduction in the TLR4 signaling pathway. However, the molecular mechanism for the specificity of these TIR domains remains unclear. Here, we present the crystal structure of the TIR domain of the human Mal molecule (Mal-TIR) at a resolution of 2.4 Å. Unexpectedly, Mal-TIR exhibits an extraordinarily long AB loop, but no αB helix or BB loop, distinguishing it from other TIR domains. More importantly, the Mal-TIR AB loop is capable of mediating direct binding to the TIR domains of TLR4 and MyD88 simultaneously. We also found that Mal-TIR can form a back-to-back dimer that may resemble the dimeric assembly of the entire Mal molecule. Our data demonstrate the bridge role of the Mal-TIR domain and provide important information about TIR domain specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.