Background and Purpose-Arterial bifurcation apices are common sites for cerebral aneurysms, raising the possibility that the unique hemodynamic conditions associated with flow dividers predispose the apical vessel wall to aneurysm formation. This study sought to identify the specific hemodynamic insults that lead to maladaptive vascular remodeling associated with aneurysm development and to identify early remodeling events at the tissue and cellular levels. Methods-We surgically created new branch points in the carotid vasculature of 6 female adult dogs. In vivo angiographic imaging and computational fluid dynamics simulations revealed the detailed hemodynamic microenvironment for each bifurcation, which were then spatially correlated with histologic features showing specific tissue responses. Results-We observed 2 distinct patterns of vessel wall remodeling: (1) hyperplasia that formed an intimal pad at the bifurcation apex and (2) destructive remodeling in the adjacent region of flow acceleration that resembled the initiation of an intracranial aneurysm, characterized by disruption of the internal elastic lamina, loss of medial smooth muscle cells, reduced proliferation of smooth muscle cells, and loss of fibronectin. Conclusions-Strong localization of aneurysm-type remodeling to the region of accelerating flow suggests that a combination of high wall shear stress and a high gradient in wall shear stress represents a "dangerous" hemodynamic condition that predisposes the apical vessel wall to aneurysm formation.
Boiling is a common mechanism for liquid−vapor phase transition and is widely exploited in power generation and refrigeration devices and systems. The efficacy of boiling heat transfer is characterized by two parameters: (a) heat transfer coefficient (HTC) or the thermal conductance; (b) the critical heat flux (CHF) limit that demarcates the transition from high HTC to very low HTC. While increasing the CHF and the HTC has significant impact on system-level energy efficiency, safety, and cost, their values for water and other heat transfer fluids have essentially remained unchanged for many decades. Here we report that the high surface tension forces offered by liquids in nanowire arrays made of Si and Cu can be exploited to increase both the CHF and the HTC by more than 100%.
Rechargeable aqueous Zn‐ion batteries promise high capacity, low cost, high safety, and sustainability for large‐scale energy storage. The Zn metal anode, however, suffers from the dendrite growth and side reactions that are mainly due to the absence of an appropriate solid electrolyte interphase (SEI) layer. Herein, the in situ formation of a dense, stable, and highly Zn2+‐conductive SEI layer (hopeite) in aqueous Zn chemistry is demonstrated, by introducing Zn(H2PO4)2 salt into the electrolyte. The hopeite SEI (≈140 nm thickness) enables uniform and rapid Zn‐ion transport kinetics for dendrite‐free Zn deposition, and restrains the side reactions via isolating active Zn from the bulk electrolyte. Under practical testing conditions with an ultrathin Zn anode (10 µm), a low negative/positive capacity ratio (≈2.3), and a lean electrolyte (9 µL mAh−1), the Zn/V2O5 full cell retains 94.4% of its original capacity after 500 cycles. This work provides a simple yet practical solution to high‐performance aqueous battery technology via building in situ SEI layers.
Circulating tumor cells (CTCs) enter peripheral blood from primary tumors and seed metastases. The genome sequencing of CTCs could offer noninvasive prognosis or even diagnosis, but has been hampered by low single-cell genome coverage of scarce CTCs. Here, we report the use of the recently developed multiple annealing and looping-based amplification cycles for whole-genome amplification of single CTCs from lung cancer patients. We observed characteristic cancer-associated single-nucleotide variations and insertions/deletions in exomes of CTCs. These mutations provided information needed for individualized therapy, such as drug resistance and phenotypic transition, but were heterogeneous from cell to cell. In contrast, every CTC from an individual patient, regardless of the cancer subtypes, exhibited reproducible copy number variation (CNV) patterns, similar to those of the metastatic tumor of the same patient. Interestingly, different patients with the same lung cancer adenocarcinoma (ADC) shared similar CNV patterns in their CTCs. Even more interestingly, patients of smallcell lung cancer have CNV patterns distinctly different from those of ADC patients. Our finding suggests that CNVs at certain genomic loci are selected for the metastasis of cancer. The reproducibility of cancer-specific CNVs offers potential for CTC-based cancer diagnostics.cancer diagnostics | personalized therapy A s a genomic disease, cancer involves a series of changes in the genome, starting from primary tumors, via circulating tumor cells (CTCs), to metastases that cause the majority of mortalities (1-3). These genomic alterations include copy number variations (CNVs), single-nucleotide variations (SNVs), and insertions/deletions (INDELs). Regardless of the concentrated efforts in the past decades, the key driving genomic alterations responsible for metastases are still elusive (1).For noninvasive prognosis and diagnosis of cancer, it is desirable to monitor genomic alterations through the circulatory system. Genetic analyses of cell-free DNA fragments in peripheral blood have been reported (4-6) and recently extended to the whole-genome scale (7-9). However, it may be advantageous to analyze CTCs, as they represent intact functional cancer cells circulating in peripheral blood (10). Although previous studies have shown that CTC counting was able to predict progression and overall survival of cancer patients (11,12), genomic analyses of CTCs could provide more pertinent information for personalized therapy (13). However, it is difficult to probe the genomic changes in DNA obtainable from the small number of captured CTCs. To meet this challenge, a single-cell whole-genome amplification (WGA) method, multiple annealing and loopingbased amplification cycles (MALBAC) (14), has been developed to improve the amplification uniformity across the entire genome over previous methods (15,16), allowing precise determination of CNVs and detection of SNVs with a low false-positive rate in a single cell. Here, we present genomic analyses of CTCs from...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.