The developments in wireless sensor network (WSN) that enriches with the unique capabilities of cognitive radio technique are giving impetus to the evolution of Cognitive Wireless Sensor Network (CWSN). In a CWSN, wireless sensor nodes can opportunistically transmit on vacant licensed frequencies and operate under a strict interference avoidance policy with the other licensed users. However, typical constraints of energy conservation from batterydriven design, local spectrum availability, reachability with other sensor nodes, and large-scale network architecture with complex topology are factors that maintain an acceptable network performance in the design of CWSN. In addition, the distributed nature of sensor networks also forces each sensor node to act cooperatively for a goal of maximizing the performance of overall network. The desirable features of CWSN make Multi-agent Reinforcement Learning (RL) technique an attractive choice. In this paper, we propose a reinforcement learning-based transmission power and spectrum selection scheme that allows individual sensors to adapt and learn from their past choices and those of their neighbors. Our proposed scheme is multi-agent distributed and is adaptive to both the end-to-end source to sink data requirements and the level of residual energy contained within the sensors in the network. Results show significant improvement in network lifetime when compared with greedy-based resource allocation schemes.
Applying cognitive radio to railway communication systems is a cutting-edge research area. This paper aims to solve the optimization problem of the global channels opportunistic accessibility in railway cognitive radio environments. In particular, we propose an efficient cooperative model for multiple wayside base stations. This model consists of Bayesian inference to calculate the probability of successful transmission on a single station along with team collaboration to maximize network performance within a group of base stations. Instead of only performing the traditional sensing and assigning, the base stations have an ability to learn from the interactions among others and the environment to gain prior knowledge. The base station agents further analyze prior knowledge and perform optimal channel assignment for global network performance. Using our cooperative model of channels opportunistic accessibility, we have shown that the model can also reduce the computational complexity in high-mobility communication environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.