Large quantities of burned or abandoned rose stalks are leading to serious environmental pollution. In this study, the effect of the moisture content of a solid-state NaOH pretreatment on methane production was first determined by a biochemical methane potential test. Then, the effect of codigestion with pig manure on methane production was investigated under the optimal moisture via thermophilic semi-dry anaerobic digestion by leaching bed reactor. Biogas production kinetic was assessed by the first-order kinetic model and modified Gompertz model. An increase in methane yield and biogas production kinetics was shown in the solid-state NaOH pretreated biomass. There was no significant difference in methane production for the three moisture contents studied during pretreatment (54%, 70%, and 77%). The anaerobic codigestion of rose stalk and pig manure increased 41% to 52% for methane yields and improved biogas production kinetics compared with monodigestion of rose stalk. Anaerobic codigestion did not greatly change the process stability, except for NH4+-N. The optimal process for the anaerobic digestion of rose stalk was as follows. The rose stalk was initially pretreated via solid-state NaOH pretreatment with a moisture content of 70%. Then, the pretreated rose stalk was co-digested with pig manure at a total solids ratio of 1:1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.