BackgroundStudies have shown that N6-methyl adenosine (m6A) plays an important role in cancer progression; however, the underlying mechanism of m6A modification in tumor microenvironment (TME) cell infiltration of bladder cancer remains unclear. This study aimed to investigate the role of m6A modification in TME cell infiltration of bladder cancer.MethodsThe RNA expression profile and clinical data of bladder cancer were obtained from The Cancer Genome Atlas and Gene Expression Omnibus. We assessed the m6A modification patterns of 664 bladder cancer samples based on 20 m6A regulators through unsupervised clustering analysis and systematically linked m6A modification patterns to TME cell infiltration characteristics. Gene ontology and gene set variation analyses were conducted to analyze the underlying mechanism based on the assessment of m6A methylation regulators. Principal component analysis was used to construct the m6A score to quantify m6A modification patterns of bladder cancer.ResultsThe genetic and expression alterations in m6A regulators were highly heterogeneous between normal and bladder tissues. Three m6A modification patterns were identified. The cell infiltration characteristics were highly consistent with the three immune phenotypes, including immune rejection, immune inflammation, and immune desert. The biological functions of three m6A modification patterns were different. Cox regression analyses revealed that the m6A score was an independent signature with patient prognosis (HR = 1.198, 95% CI: 1.031–1.390). Patients with a low-m6A score were characterized by increased tumor mutation burden, PD-L1 expression, and poorer survival. Patients in the low-m6A score group also showed significant immune responses and clinical benefits in the CTLA-4 immunotherapy cohort (p =0.0069).ConclusionsThe m6A methylation modification was related to the formation of TME heterogeneity and complexity. Assessing the m6A modification pattern of individual bladder cancer will improve the understanding of TME infiltration characteristics.
Acquired immune deficiency syndrome (AIDS) is a serious public health problem. This study aims to establish a combined model of seasonal autoregressive integrated moving average (SARIMA) and Prophet models based on an L1-norm to predict the incidence of AIDS in Henan province, China. The monthly incidences of AIDS in Henan province from 2012 to 2020 were obtained from the Health Commission of Henan Province. A SARIMA model, a Prophet model, and two combined models were adopted to fit the monthly incidence of AIDS using the data from January 2012 to December 2019. The data from January 2020 to December 2020 was used to verify. The mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) were used to compare the prediction effect among the models. The results showed that the monthly incidence fluctuated from 0.05 to 0.50 per 100,000 individuals, and the monthly incidence of AIDS had a certain periodicity in Henan province. In addition, the prediction effect of the Prophet model was better than SARIMA model, the combined model was better than the single models, and the combined model based on the L1-norm had the best effect values (MSE = 0.0056, MAE = 0.0553, MAPE = 43.5337). This indicated that, compared with the L2-norm, the L1-norm improved the prediction accuracy of the combined model. The combined model of SARIMA and Prophet based on the L1-norm is a suitable method to predict the incidence of AIDS in Henan. Our findings can provide theoretical evidence for the government to formulate policies regarding AIDS prevention.
About 8% of the Americans contract influenza during an average season according to the Centers for Disease Control and Prevention in the United States. It is necessary to strengthen the early warning for influenza and the prediction of public health. In this study, Spatial autocorrelation analysis and spatial scanning analysis were used to identify the spatiotemporal patterns of influenza-like illness (ILI) prevalence in the United States, during the 2011–2020 transmission seasons. A seasonal autoregressive integrated moving average (SARIMA) model was constructed to predict the influenza incidence of high-risk states. We found the highest incidence of ILI was mainly concentrated in the states of Louisiana, District of Columbia and Virginia. Mississippi was a high-risk state with a higher influenza incidence, and exhibited a high-high cluster with neighboring states. A SARIMA (1, 0, 0) (1, 1, 0)52 model was suitable for forecasting the ILI incidence of Mississippi. The relative errors between actual values and predicted values indicated that the predicted values matched the actual values well. Influenza is still an important health problem in the United States. The spread of ILI varies by season and geographical region. The peak season of influenza was the winter and spring, and the states with higher influenza rates are concentrated in the southeast. Increased surveillance in high-risk states could help control the spread of the influenza.
Introduction: About 8% of Americans get influenza during an average season from the Centers for Disease Control and Prevention in the United States. It is necessary to strengthen the early warning of influenza and the prediction of public health. Methods In this study, we analyzed the characteristics of Influenza-like Illness (ILI) by Geographic Information System and SARIMA model, respectively. Spatio-temporal cluster analysis detected 23 clusters of ILI during the study period. Results The highest incidence of ILI was mainly concentrated in the states of Louisiana, District of Columbia and Virginia. The Local spatial autocorrelation analysis revealed the High-High cluster was mainly located in Louisiana and Mississippi. This means that if the influenza incidence is high in Louisiana and Mississippi, the neighboring states will also have higher influenza incidence rates. The regression model SARIMA(1, 0, 0)(1, 1, 0)52 with statistical significance was obtained to forecast the ILI incidence of Mississippi. Conclusions The study showed, the ILI incidence will begin to increase in the 45th week 2020 and peak in the 6th week 2021. To conclude, notable epidemiological differences were observed across states, indicating that some states should pay more attention to prevent and control respiratory infectious diseases.
BackgroundBladder cancer (BLCA) is one of the leading causes of cancer deaths in the world, and the molecular mechanism of its pathogenesis is very complicated. Long non-coding RNA (lncRNA) can interact with microRNA (miRNA) through the mechanism of competitive endogenous RNA (ceRNA), and affect the expression of Messenger RNA (mRNA), and affect the pathogenesis of bladder cancer. This study aims to construct the ceRNA-regulated bladder cancer network related to lncRNA and identify a novel lncRNA signature related to the survival prognosis of patients with bladder cancer. It was validated in GEPIA's online bioinformatics network server assists. MethodsThe RNA sequencing data of normal and adjacent bladder cancer tissues are from the Cancer Genome Atlas (TCGA). We identify differentially expressed (DE) genes by comparing gene expression between normal tissues and tumors in the TCGA dataset. Construct a ceRNA network and explore potential biological markers. Based on the ceRNA network, univariate regression analysis and multivariate regression analysis were used to screen out the lncRNA related to the overall survival (OS) of bladder cancer. It was validated in GEPIA's online bioinformatics network server assists. Receiver operating characteristic curve (ROC) analysis was used to evaluate the prognostic value of the risk score.ResultsWe screened out 666 lncRNAs, 160 microRNAs (miRNAs), and 1,820 Messenger RNAs (mRNAs) by comparing normal bladder cancer tissues and adjacent tissues (P<0.05). Then, we constructed a ceRNA regulatory network containing 44 DElncRNA, 22 DEmiRNA, and 52 DEmRNA. The survival analysis of differential genes in the ceRNA network identified 9 lncRNAs, 8 miRNAs, and 12 mRNAs that are associated with the prognosis of BLCA. Cox regression analysis of 9 LncRNAs related to the prognosis of bladder cancer showed that 4 lncRNAs (AC078778.1, ADAMTS9-AS1, ADAMTS9-AS2, and NAV2-AS2) can be independently used as prognostic markers of bladder cancer.ConclusionsBased on the construction of the bladder cancer ceRNA network, a new prognostic signature of four lncRNA-based has been discovered. It will help to better understand the mechanism of bladder cancer occurrence, development and metastasis, and provide direction for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.