A better understanding of global ruminal microbiota and metabolites under extensive feeding conditions is a prerequisite for optimizing rumen function and improving ruminant feed efficiency. Furthermore, the gap between the information on the ruminal microbiota and metabolites needs to be bridged. The aim of this study was to investigate the effects of a wide range of forage to concentrate ratios (F:C) on changes and interactions of ruminal microbiota and metabolites. Four diets with different F:C (80:20, 60:40, 40:60, and 20:80) were limit-fed to 24 Holstein heifers, and Illumina MiSeq sequencing and gas chromatography time-of-flight/mass spectrometry were used to investigate the profile changes of the ruminal microbes and metabolites, and the interaction between them. The predominant bacterial phyla in the rumen were Bacteroidetes (57.2 ± 2.6%) and Firmicutes (26.8 ± 1.6%), and the predominant anaerobic fungi were Neocallimastigomycota (64.3 ± 3.8%) and Ascomycota (22.6 ± 2.4%). In total, 44, 9, 25, and 2 genera, respectively, were identified as the core rumen bacteria, ciliate protozoa, anaerobic fungi, and archaea communities across all samples. An increased concentrate level linearly decreased the relative abundance of cellulolytic bacteria and ciliates, namely Fibrobacter, Succinimonas, Polyplastron, and Ostracodinium (q < 0.05), and linearly increased the relative abundance of Entodinium (q = 0.04), which is a non-fibrous carbohydrate degrader. Dietary F:C had no effect on the communities of anaerobic fungi and archaea. Rumen metabolomics analysis revealed that ruminal amino acids, lipids, organic acids, and carbohydrates were altered significantly by altering the dietary F:C. With increasing dietary concentrate levels, the proportions of propionate and butyrate linearly increased in the rumen (P ≤ 0.01). Correlation analysis revealed that there was some utilization relationship or productive association between candidate metabolites and affected microbe groups. This study provides a better understanding of ruminal microbiota and metabolites under a wide range of dietary F:C, which could further reveal integrative information of rumen function and lead to an improvement in ruminant production.
The functional neuroanatomy and connectivity of reward processing in adults are well documented, with relatively less research on adolescents, a notable gap given this developmental period's association with altered reward sensitivity. Here, a large sample (n = 1,510) of adolescents performed the monetary incentive delay (MID) task during functional magnetic resonance imaging. Probabilistic maps identified brain regions that were reliably responsive to reward anticipation and receipt, and to prediction errors derived from a computational model. Psychophysiological interactions analyses were used to examine functional connections throughout reward processing. Bilateral ventral striatum, pallidum, insula, thalamus, hippocampus, cingulate cortex, midbrain, motor area, and occipital areas were reliably activated during reward anticipation. Bilateral ventromedial prefrontal cortex and bilateral thalamus exhibited positive and negative activation, respectively, during reward receipt. Bilateral ventral striatum was reliably active following prediction errors. Previously, individual differences in the personality trait of sensation seeking were shown to be related to individual differences in sensitivity to reward outcome. Here, we found that sensation seeking scores were negatively correlated with right inferior frontal gyrus activity following reward prediction errors estimated using a computational model. Psychophysiological interactions demonstrated widespread cortical and subcortical connectivity during reward processing, including connectivity between reward‐related regions with motor areas and the salience network. Males had more activation in left putamen, right precuneus, and middle temporal gyrus during reward anticipation. In summary, we found that, in adolescents, different reward processing stages during the MID task were robustly associated with distinctive patterns of activation and of connectivity.
The aim of this study was to evaluate the effects of Saccharomyces cerevisiae fermentation products (SCFP) in the calf starter and milk on ruminal fermentation, gastrointestinal morphology, and microbial community in the first 56 d of life. Thirty Holstein bull calves were randomly assigned to 1 of 3 groups: a texturized calf starter containing 0 (CON), 0.5, or 1% SCFP (XPC, Diamond V, Cedar Rapids, IA) of dry matter from d 4 to 56. In addition, the XPC-supplemented calves were fed with 1 g/d SCFP (SmartCare, Diamond V, Cedar Rapids, IA) in milk from d 2 to 30. All calves were fed 4 L of colostrum within 1 h of birth and were subsequently fed milk twice daily until weaned on d 56. Rumen fluid was collected by an esophageal tube 4 h after the morning feeding on d 28 and 56 to determine ruminal pH, ammonia-N, and volatile fatty acids concentrations. On d 56, 15 (5 per treatment) calves were harvested and slaughter weight, gastrointestinal morphology parameters, and bacteria community were recorded. Papilla length, width, and surface area were measured from 5 locations within the rumen. Villus height, width, surface area, crypt depth, and villus height-to-crypt depth ratio were measured in the duodenum, jejunum, and ileum. Next-generation sequencing technology was used to test the microbial community of the rumen and duodenum samples on d 28 and 56. Data were analyzed by MIXED procedure in SAS (SAS Institute Inc., Cary, NC) with contrast statements to declare CON versus all SCFP and 0.5 versus 1% SCFP in starter grains. Ruminal pH, ammonia-N, and total volatile fatty acids were not altered by SCFP. However, the supplemented groups exhibited higher ruminal butyrate concentrations coinciding with higher Butyrivibrio and lower Prevotella richness than CON group. Supplementation of SCFP increased papilla length in the rumen. In the small intestine, SCFP reduced crypt depth of jejunum, and increased villus height-to-crypt depth ratio in all segments of the small intestine, especially when supplemented at a higher dosage in the starter. In conclusion, Saccharomyces cerevisiae fermentation products improved gastrointestinal morphology, possibly due to increased Butyrivibrio and decreased Prevotella richness of the rumen fluid, which resulted in an increase in butyrate production, and the effect was slightly greater with the higher dosage of SCFP in the starter.
The first meal of a neonatal calf after birth is crucial for survival and health. The present experiment was performed to assess the effects of colostrum quality on IgG passive transfer, immune and antioxidant status, and intestinal morphology and histology in neonatal calves. Twenty-eight Holstein neonatal male calves were used in the current study, 24 of which were assigned to 1 of 3 treatment groups: those that received colostrum (GrC), transitional milk (GrT, which was obtained after the first milking on 2-3 d after calving), and bulk tank milk (GrB) only at birth. The 4 extra neonatal calves who were not fed any milk were assigned to the control group and were killed immediately after birth to be a negative control to small intestinal morphology and histology detection. Calves in GrC gained more body weight than in GrT, whereas GrB calves lost 0.4 kg compared with the birth weight. Serum total protein, IgG, and superoxide dismutase concentrations were highest in GrC, GrT was intermediate, whereas GrB was the lowest on d 2, 3, and 7. Apparent efficiency of absorption at 48 h, serum complement 3 (C3), and complement 4 (C4) on d 2, 3, and 7 in GrB was low compared with GrC and GrT. On the contrary, malondialdehyde on d 7 increased in GrB. Calves in GrC had better villus length and width, crypt depth, villus height/crypt depth (V/C) value, and mucosal thickness in the duodenum, jejunum, and ileum, whereas GrT calves had lower villus length and width, crypt depth, and mucosal thickness than those fed colostrum. Villi of calves in GrB were nonuniform, sparse, severely atrophied, and apically abscised, and Peyer's patches and hydroncus were detected. Overall, colostrum is the best source for calves in IgG absorption, antioxidant activities, and serum growth metabolites, and promoting intestinal development. The higher quality of colostrum calves ingested, the faster immune defense mechanism and the more healthy intestinal circumstances they established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.