Changes of ST–T complex are the main indicators in myocardial ischemia detection based on electrocardiogram (ECG) signals. However, ST–T complex is highly sensitive to interferences (baseline wandering, postural changes, electrode interference, etc.), especially T-wave has a large morphological variability. Therefore, the feature points of ECG ST–T complex are very difficult to detect accurately. Currently, the commonly used detection methods for ST-segment include R + x and J + x, but they often misjudges the T-wave rising limb as ST-segment. Therefore, a new accurate hybrid approach for ST–T detection was proposed in this paper. First, T-wave onsets and offsets were detected using regional method and T-wave peaks were located using function comparing method. Then, a squeeze approach for ST-segment detection was proposed based on R-wave peak and T-wave onset. Long-term ST database (LTST) verification demonstrated that the accuracy of ST–T detection reached above 91%. In addition, it had a good timeliness and robustness and was easy to implement.
Fetal electrocardiography (ECG) monitoring during pregnancy can provide crucial information for assessing the fetus’s health status and making timely decisions. This paper proposes a portable ECG monitoring system to record the abdominal ECG (AECG) of the pregnant woman, comprising both maternal ECG (MECG) and fetal ECG (FECG), which could be applied to fetal heart rate (FHR) monitoring at the home setting. The ECG monitoring system is based on data acquisition circuits, data transmission module, and signal analysis platform, which consists of low input-referred noise, high input impedance, and high resolution. The combination of the adaptive dual threshold (ADT) and the independent component analysis (ICA) algorithm is employed to extract the FECG from the AECG signals. To validate the performance of the proposed system, AECG is recorded and analyzed of pregnant women in three different postures (supine, seated, and standing). The result shows that the proposed system can record the AECG in different postures with good signal quality and high accuracy in fetal ECG and heart rate information. Sensitivity (Se), positive predictive accuracy (PPV), accuracy (ACC), and their harmonic mean (F1) are utilized as the metrics to evaluate the performance of the fetal QRS (fQRS) complexes extraction. The average Se, PPV, ACC, and F1 score are 99.62%, 97.90%, 97.40%, and 98.66% for the fQRS complexes extraction,, respectively. This paper shows the proposed system has a promising application in fetal health monitoring.
Evaluation of sympathetic nerve activity (SNA) using skin sympathetic nerve activity (SKNA) signal has attracted interest in recent studies. However, signal noises may obstruct the accurate location for the burst of SKNA, leading to the quantification error of the signal. In this study, we use the Teager–Kaiser energy (TKE) operator to preprocess the SKNA signal, and then candidates of burst areas were segmented by an envelope-based method. Since the burst of SKNA can also be discriminated by the high-frequency component in QRS complexes of electrocardiogram (ECG), a strategy was designed to reject their influence. Finally, a feature of the SKNA energy ratio (SKNAER) was proposed for quantifying the SKNA. The method was verified by both sympathetic nerve stimulation and hemodialysis experiments compared with traditional heart rate variability (HRV) and a recently developed integral skin sympathetic nerve activity (iSKNA) method. The results showed that SKNAER correlated well with HRV features (r = 0.60 with the standard deviation of NN intervals, 0.67 with low frequency/high frequency, 0.47 with very low frequency) and the average of iSKNA (r = 0.67). SKNAER improved the detection accuracy for the burst of SKNA, with 98.2% for detection rate and 91.9% for precision, inducing increases of 3.7% and 29.1% compared with iSKNA (detection rate: 94.5% (p < 0.01), precision: 62.8% (p < 0.001)). The results from the hemodialysis experiment showed that SKNAER had more significant differences than aSKNA in the long-term SNA evaluation (p < 0.001 vs. p = 0.07 in the fourth period, p < 0.01 vs. p = 0.11 in the sixth period). The newly developed feature may play an important role in continuously monitoring SNA and keeping potential for further clinical tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.