Dual-band electrochromism is a phenomenon where materials can independently regulate the transmittance of visible (VIS) and near-infrared (NIR) light. Owing to their bistability, low energy consumption, and independent control over VIS and NIR regions, dual-band electrochromic (EC) devices have been of great significance to fully harnessing VIS and NIR light and building an energy-saving society. The past several years have witnessed the efforts put in developing novel EC materials to improve their dual-band optical performance through altering their composition, structural, and physicochemical features, which determine the optical behavior of dual-band EC devices. In this review, the concept, significance, working principle, and key influence factors of dual-band electrochromism are briefly introduced. Next, the up-to-date progress of dual-band EC materials including inorganic, organic, and composites materials are summarized, with a focus on material design, device fabrication, and performance optimization. Finally, the challenges and perspectives of dual-band EC materials and devices are also presented.
The integration of two quite different techniques, conventional electrochemistry and spectroscopy, into spectroelectrochemistry (SEC) provides a complete description of chemically driven electron transfer processes and redox events for different kinds of molecules and nanoparticles. SEC possesses interdisciplinary advantages and can further expand the scopes in the fields of analysis and other applications, emphasizing the hot issues of analytical chemistry, materials science, biophysics, chemical biology, and so on. Considering the past and future development of SEC, a review on the recent progress of SEC is presented and selected examples involving surface-enhanced Raman scattering (SERS), ultraviolet-visible (UV-Vis), near-infrared (NIR), Fourier transform infrared (FTIR), fluorescence, as well as other SEC are summarized to fully demonstrate these techniques. In addition, the optically transparent electrodes and SEC cell design, and the typical applications of SEC in mechanism study, electrochromic device fabrication, sensing and protein study are fully introduced. Finally, the key issues, future perspectives and trends in the development of SEC are also discussed.
Tunable gating graphene oxide (GO) membranes with high water permeance and precise molecular separation remain highly desired in smart nanofiltration devices. Herein, bioinspired by the filtration function of the renal glomerulus, we report a smart and high-performance graphene oxide membrane constructed via introducing positively charged polyethylenimine-grafted GO (GO-PEI) to negatively charged GO nanosheets. It was found that the additional GO-PEI component changed the surface charge, improved the hydrophilicity, and enlarged the nanochannels. The glomerulus-inspired graphene oxide membrane (G-GOM) shows a water permeance up to 88.57 L m–2 h–1 bar–1, corresponding to a 4 times enhancement compared with that of a conventional GO membrane due to the enlarged confined nanochannels. Meanwhile, owing to the electrostatic interaction, it can selectively remove positively charged methylene blue at pH 12 and negatively charged methyl orange at pH 2, with a removal rate of over 96%. The high and cyclic water permeance and highly selective organic removal performance can be attributed to the synergic effect of controlled nanochannel size and tunable electrostatic interaction in responding to the environmental pH. This strategy provides insight into designing pH-responsive gating membranes with tunable selectivity, representing a great advancement in smart nanofiltration with a wide range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.