Changes in gene expression are important for responses to abiotic stress. Transcriptome profiling of heat- or cold-stressed maize genotypes identifies many changes in transcript abundance. We used comparisons of expression responses in multiple genotypes to identify alleles with variable response to heat or cold stress and to distinguish examples of cis- or trans-regulatory variation for stress-responsive expression changes. We used motifs enriched near the transcription start sites for thermal stress-responsive genes to develop predictive models of gene expression responses. Prediction accuracies can be improved focusing only on motifs within unmethylated regions near the transcription start site and vary for genes with different dynamic responses to stress. Models trained on expression responses in a single genotype and promoter sequences provided lower performance when applied to other genotypes but this could be improved by using models trained on data from all three genotypes tested. The analysis of genes with cis-regulatory variation provides evidence for structural variants that result in presence/absence of transcription factor binding sites in creating variable responses. This study provides insights into cis-regulatory motifs for heat- and cold-responsive gene expression and defines a framework for developing models to predict expression responses across multiple genotypes.
Although genome-sequence assemblies are available for a growing number of plant species, gene-expression responses to stimuli have been cataloged for only a subset of these species. Many genes show altered transcription patterns in response to abiotic stresses. However, orthologous genes in related species often exhibit different responses to a given stress. Accordingly, data on the regulation of gene expression in one species are not reliable predictors of orthologous gene responses in a related species. Here, we trained a supervised classification model to identify genes that transcriptionally respond to cold stress. A model trained with only features calculated directly from genome assemblies exhibited only modest decreases in performance relative to models trained by using genomic, chromatin, and evolution/diversity features. Models trained with data from one species successfully predicted which genes would respond to cold stress in other related species. Cross-species predictions remained accurate when training was performed in cold-sensitive species and predictions were performed in cold-tolerant species and vice versa. Models trained with data on gene expression in multiple species provided at least equivalent performance to models trained and tested in a single species and outperformed single-species models in cross-species prediction. These results suggest that classifiers trained on stress data from well-studied species may suffice for predicting gene-expression patterns in related, less-studied species with sequenced genomes.
The Lower Cretaceous Shahezi shales are the targets for lacustrine shale gas exploration in Changling Fault Depression (CFD), Southern Songliao Basin. In this study, the Shahezi shales were investigated to further understand the impacts of rock compositions, including organic matters and minerals on pore structure and fractal characteristics. An integrated experiment procedure, including total organic carbon (TOC) content, X-ray diffraction (XRD), field emission-scanning electron microscope (FE-SEM), low pressure nitrogen physisorption (LPNP), and mercury intrusion capillary pressure (MICP), was conducted. Seven lithofacies can be identified according to on a mineralogy-based classification scheme for shales. Inorganic mineral hosted pores are the most abundant pore type, while relatively few organic matter (OM) pores are observed in FE-SEM images of the Shahezi shales. Multimodal pore size distribution characteristics were shown in pore width ranges of 0.5–0.9 nm, 3–6 nm, and 10–40 nm. The primary controlling factors for pore structure in Shahezi shales are clay minerals rather than OM. Organic-medium mixed shale (OMMS) has the highest total pore volumes (0.0353 mL/g), followed by organic-rich mixed shale (ORMS) (0.02369 mL/g), while the organic-poor shale (OPS) has the lowest pore volumes of 0.0122 mL/g. Fractal dimensions D1 and D2 (at relative pressures of 0–0.5 and 0.5–1 of LPNP isotherms) were obtained using the Frenkel–Halsey–Hill (FHH) method, with D1 ranging from 2.0336 to 2.5957, and D2 between 2.5779 and 2.8821. Fractal dimensions are associated with specific lithofacies, because each lithofacies has a distinctive composition. Organic-medium argillaceous shale (OMAS), rich in clay, have comparatively high fractal dimension D1. In addition, organic-medium argillaceous shale (ORAS), rich in TOC, have comparatively high fractal dimension D2. OPS shale contains more siliceous and less TOC, with the lowest D1 and D2. Factor analysis indicates that clay contents is the most significant factor controlling the fractal dimensions of the lacustrine Shahezi shale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.