Abstract:The neutrosophic cubic set can contain much more information to express its interval neutrosophic numbers and single-valued neutrosophic numbers simultaneously in indeterminate environments. Hence, it is a usual tool for expressing much more information in complex decision-making problems. Unfortunately, there has been no research on similarity measures of neutrosophic cubic sets so far. Since the similarity measure is an important mathematical tool in decision-making problems, this paper proposes three cosine measures between neutrosophic cubic sets based on the included angle cosine of two vectors, distance, and cosine functions, and investigates their properties. Then, we develop a cosine measures-based multiple attribute decision-making method under a neutrosophic cubic environment in which, from the cosine measure between each alternative (each evaluated neutrosophic cubic set) and the ideal alternative (the ideal neutrosophic cubic set), the ranking order of alternatives and the best option can be obtained, corresponding to the cosine measure values in the decision-making process. Finally, an illustrative example about the selection problem of investment alternatives is provided to illustrate the application and feasibility of the developed decision-making method.
Single-valued neutrosophic numbers (SVNNs) can express incomplete, indeterminate, and inconsistent information in the real world. Then, the common weighted aggregation operators of SVNNs may result in unreasonably aggregated results in some situations. Based on the hybrid weighted arithmetic and geometric aggregation and hybrid ordered weighted arithmetic and geometric aggregation ideas, this paper proposes SVNN hybrid weighted arithmetic and geometric aggregation (SVNNHWAGA) and SVNN hybrid ordered weighted arithmetic and geometric aggregation (SVNNHOWAGA) operators and investigates their rationality and effectiveness by numerical examples. Then, we establish a multiple-attribute decision-making method based on the SVNNHWAGA or SVNNHOWAGA operator under a SVNN environment. Finally, the multiple-attribute decision-making problem about the design schemes of punching machine is presented as a case to show the application and rationality of the proposed decision-making method.Keywords: multiple-attribute decision-making; single-valued neutrosophic number; single-valued neutrosophic number hybrid weighted arithmetic and geometric aggregation (SVNNHWAGA) operator; single-valued neutrosophic number hybrid ordered weighted arithmetic and geometric aggregation (SVNNHOWAGA) operator
In practical situations, we often have to handle programming problems involving indeterminate information. Building on the concepts of indeterminacy I and neutrosophic number (NN) (z = p + qI for p, q ∈ R), this paper introduces some basic operations of NNs and concepts of NN nonlinear functions and inequalities. These functions and/or inequalities contain indeterminacy I and naturally lead to a formulation of NN nonlinear programming (NN-NP). These techniques include NN nonlinear optimization models for unconstrained and constrained problems and their general solution methods. Additionally, numerical examples are provided to show the effectiveness of the proposed NN-NP methods. It is obvious that the NN-NP problems usually yield NN optimal solutions, but not always. The possible optimal ranges of the decision variables and NN objective function are indicated when the indeterminacy I is considered for possible interval ranges in real situations.
Fault diagnosis is an important task for the normal operation and maintenance of equipment. In many real situations, the diagnosis data cannot provide deterministic values and are usually imprecise or uncertain. Thus, interval-valued fuzzy sets (IVFSs) are very suitable for expressing imprecise or uncertain fault information in real problems. However, existing literature scarcely deals with fault diagnosis problems, such as gasoline engines and steam turbines with IVFSs. However, the similarity measure is one of the important tools in fault diagnoses. Therefore, this paper proposes a new similarity measure of IVFSs based on logarithmic function and its fault diagnosis method for the first time. By the logarithmic similarity measure between the fault knowledge and some diagnosis-testing samples with interval-valued fuzzy information and its relation indices, we can determine the fault type and ranking order of faults corresponding to the relation indices. Then, the misfire fault diagnosis of the gasoline engine and the vibrational fault diagnosis of a turbine are presented to demonstrate the simplicity and effectiveness of the proposed diagnosis method. The fault diagnosis results of gasoline engine and steam turbine show that the proposed diagnosis method not only gives the main fault types of the gasoline engine and steam turbine but also provides useful information for multi-fault analyses and predicting future fault trends. Hence, the logarithmic similarity measure and its fault diagnosis method are main contributions in this study and they provide a useful new way for the fault diagnosis with interval-valued fuzzy information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.