We put forward the motor active flexible suspension and investigate its dynamic effects on the high-speed train bogie. The linear and nonlinear hunting stability are analyzed using a simplified eight degrees-of-freedom bogie dynamics with partial state feedback control. The active control can improve the function of dynamic vibration absorber of the motor flexible suspension in a wide frequency range, thus increasing the hunting stability of the bogie at high speed. Three different feedback state configurations are compared and the corresponding optimal motor suspension parameters are analyzed with the multi-objective optimal method. In addition, the existence of the time delay in the control system and its impact on the bogie hunting stability are also investigated. The results show that the three control cases can effectively improve the system stability, and the optimal motor suspension parameters in different cases are different. The direct state feedback control can reduce corresponding feed state's vibration amplitude. Suppressing the frame's vibration can significantly improve the running stability of bogie. However, suppressing the motor's displacement and velocity feedback are equivalent to increasing the motor lateral natural vibration frequency and damping, separately. The time delay over 10 ms in control system reduces significantly the system stability. At last, the effect of preset value for getting control gains on the system linear and nonlinear critical speed is studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.