Background α-Linolenic acid (ALA) is a plant-derived omega-3 unsaturated fatty acid that is rich in flaxseed oil (FO). The effect of FO on bone health is controversial. This study aims to evaluate the effect of FO on bone damage induced by a high-fat diet (HFD) and to explore the possible mechanism. Methods Male Sprague-Dawley rats were fed a normal control diet (NC, 10% fat), FO diet (NY, 10% fat), HFD (60% fat), or HFD containing 10% FO (HY, 60% fat) for 22 weeks. Micro CT and three-point bending tests were conducted to evaluate bone microstructure and biomechanics. Serum was collected for the detection of ALP, P1NP, and CTX-1. Rat primary osteoblasts (OBs) were treated with different concentrations of ALA with or without palmitic acid (PA) treatment. The ALP activity, osteogenic-related gene and protein expression were measured. Results Rats in the HFD group displayed decreased biomechanical properties, such as maximum load, maximum fracture load, ultimate tensile strength, stiffness, energy absorption, and elastic modulus, compared with the NC group (p < 0.05). However, HY attenuated the HFD-induced decreases in bone biomechanical properties, including maximum load, maximum fracture load, and ultimate tensile strength (p < 0.05). Trabecular bone markers such as trabecular volume bone mineral density (Tb. vBMD), trabecular bone volume/total volume (Tb. BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th) were decreased, trabecular separation (Tb. Sp) and the structure model index (SMI) were increased in the HFD group compared with the NC group, and all parameters were remarkably improved in the HY group compared to the HFD group (p < 0.05). However, cortical bone markers such as cortical volume bone mineral density (Ct. vBMD), cortical bone volume/total volume (Ct. BV/TV) and cortical bone thickness (Ct. Th) were not significantly different among all groups. Moreover, the serum bone formation markers ALP and P1NP were higher and the bone resorption marker CTX-1 was lower in the HY group compared with levels in the HFD group. Compared with the NC group, the NY group had no difference in the above indicators. In rat primary OBs, PA treatment significantly decreased ALP activity and osteogenic gene and protein (β-catenin, RUNX2, and osterix) expression, and ALA dose-dependently restored the inhibition induced by PA. Conclusions FO might be a potential therapeutic agent for HFD-induced bone loss, most likely by promoting osteogenesis.
Background As the incidence of secretory osteoporosis has increased, bone loss, osteoporosis and their relationships with thyroid-stimulating hormone (TSH) have received increased attention. In this study, the role of TSH in bone metabolism and its possible underlying mechanisms were investigated. Methods We analyzed the serum levels of free triiodothyronine (FT3), free thyroxine (FT4), and TSH and the bone mineral density (BMD) levels of 114 men with normal thyroid function. In addition, osteoblasts from rat calvarial samples were treated with different doses of TSH for different lengths of time. The related gene and protein expression levels were investigated. Results A comparison of the BMD between the high-level and low-level serum TSH groups showed that the TSH serum concentration was positively correlated with BMD. TSH at concentrations of 10 mU/mL and 100 mU/mL significantly increased the mRNA levels of ALP, COI1 and Runx2 compared with those of the control (P < 0.05, P < 0.01). Bone morphogenetic protein (BMP)2 activity was enhanced with both increased TSH concentration and increased time. The protein levels of Runx2 and osterix were increased in a dose-dependent manner. Conclusions The circulating concentrations of TSH and BMD were positively correlated with normal thyroid function in males. TSH promoted osteoblast proliferation and differentiation in rat primary osteoblasts.
Previous studies suggest that postmenopausal osteoarthritis is linked to a decrease in estrogen levels. However, whether follicle-stimulating hormone (FSH), the upstream hormone of estrogen, affects cartilage destruction and thus contributes to the onset of osteoarthritis has never been explored. To evaluate the potential involvement of FSH in joint degeneration and to identify the molecular mechanisms through which FSH influences chondrocytes, mouse cartilage chondrocytes and the ATDC5 chondrocyte cell line were treated with FSH and inhibitors of intracellular signaling pathways. We observed that FSH induces chondrocyte dedifferentiation by decreasing type II collagen (Coll-II) synthesis. Chondrocyte cytoskeleton reorganization was also observed after FSH treatment. The FSH-induced decrease in Coll-II was rescued by ERK-1/2 inhibition but aggravated by p38 inhibition. In addition, knocking down the FSH receptor (Fshr) by using Fshr siRNA abolished chondrocyte dedifferentiation, as indicated by the increased expression of Coll-II. Inhibition of the protein Gαi by pertussis toxin (PTX) also restored FSH-inhibited Coll-II, suggesting that Gαi is downstream of FSHR in chondrocyte dedifferentiation. FSHβ antibody blockade prevented cartilage destruction and cell loss in mice. Moreover, decreased Coll-II staining due to the progression of aging could be rescued by blocking FSH. Thus, we suggest that high circulating FSH, independent of estrogen, is an important regulator in chondrocyte dedifferentiation and cartilage destruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.